Consider the gradient function $f'\left(x\right)$f′(x)$=$=$2$2.
The family of the antiderivative, $f\left(x\right)$f(x), will be:
Exponential
Cubic
Linear
Quadratic
The form of the antiderivative will be $f\left(x\right)$f(x)$=$=$mx+c$mx+c. State the value of $m$m.
Which of the following functions represent possible values for an antiderivative $f\left(x\right)$f(x)?
Select all that apply.
$f\left(x\right)=-2x$f(x)=−2x
$f\left(x\right)=2x+6$f(x)=2x+6
$f\left(x\right)=2x-3$f(x)=2x−3
$f\left(x\right)=-2x+6$f(x)=−2x+6
Consider the gradient function $f'\left(x\right)$f′(x)$=$=$6$6.
Consider the gradient function $f'\left(x\right)$f′(x)$=$=$-8x$−8x.
Consider the gradient function $f'\left(x\right)$f′(x)$=$=$4x+3$4x+3.