NZ Level 7 (NZC) Level 2 (NCEA) Graphing Linear Absolute Value Functions I

## Interactive practice questions

Consider the function $y=\left|x\right|$y=|x|.

a

Complete the table.

 $x$x $y$y $-2$−2 $-1$−1 $0$0 $1$1 $2$2 $\editable{}$ $\editable{}$ $\editable{}$ $\editable{}$ $\editable{}$
b

Hence sketch a graph of the function.

c

State the equation of the axis of symmetry.

d

State the coordinates of the vertex.

Vertex $=$=$\left(\editable{},\editable{}\right)$(,)

e

Write the equation and gradient for the two lines that make up the graph of the function.

$x<0$x<0 $y$y$=$=$\editable{}$ $\editable{}$

$x>0$x>0

$y$y$=$=$\editable{}$ $\editable{}$
Easy
Approx 5 minutes

Consider the function $y=\left|x-4\right|$y=|x4|.

Consider the function $y=\left|x+2\right|$y=|x+2|.

Consider the function $y=\left|2x+10\right|$y=|2x+10|.

### Outcomes

#### M7-2

Display the graphs of linear and non-linear functions and connect the structure of the functions with their graphs

#### 91257

Apply graphical methods in solving problems