New Zealand
Level 7 - NCEA Level 2

# Domain and Range of Hyperbolas

## Interactive practice questions

What is the domain of the function defined by $f\left(x\right)=\frac{1}{x+5}$f(x)=1x+5?

$\left(-\infty,1\right)$(,1)$\cup$$\left(1,\infty\right)(1,) A \left(-\infty,0\right)(,0)\cup$$\left(0,\infty\right)$(0,)

B

$\left(-\infty,-5\right)$(,5)$\cup$$\left(-5,\infty\right)(5,) C \left(-\infty,5\right)(,5)\cup$$\left(5,\infty\right)$(5,)

D

$\left(-\infty,1\right)$(,1)$\cup$$\left(1,\infty\right)(1,) A \left(-\infty,0\right)(,0)\cup$$\left(0,\infty\right)$(0,)

B

$\left(-\infty,-5\right)$(,5)$\cup$$\left(-5,\infty\right)(5,) C \left(-\infty,5\right)(,5)\cup$$\left(5,\infty\right)$(5,)

D
Easy
Less than a minute

Consider the function $y=\frac{2}{x+1}$y=2x+1.

Consider the function $y=\frac{3}{x}+2$y=3x+2.

Consider the function $y=-\frac{3}{x}+4$y=3x+4.

### Outcomes

#### M7-2

Display the graphs of linear and non-linear functions and connect the structure of the functions with their graphs

#### 91257

Apply graphical methods in solving problems