NZ Level 6 (NZC) Level 1 (NCEA)
topic badge
Quadratic graphing
Lesson

Let's review what we know about graphing quadratic functions. Quadratic functions can be written in each of the following forms:

  • $y=ax^2+bx+c$y=ax2+bx+c - This is known as the general form or $y$y-intercept form.
  • $y=a\left(x-d\right)\left(x-e\right)$y=a(xd)(xe) - This is known as the factored or $x$x-intercept form.
  • $y=a\left(x-h\right)^2+k$y=a(xh)2+k - This is known as the turning point form.

Each of these names gives us a clue to the various features we can identify on a parabola.

When graphing a quadratic, no matter in which form it is presented, we must find the $x$x-intercepts, the $y$y-intercept, and the turning point.

 

Graphing in the Form $y=a\left(x-d\right)\left(x-e\right)$y=a(xd)(xe)

Example 1

Consider the parabola $y=\left(x+1\right)\left(x-3\right)$y=(x+1)(x3).

  1. Find the $y$y value of the $y$y-intercept.

  2. Find the $x$x values of the $x$x-intercepts.

    Write all solutions on the same line separated by a comma.

  3. State the equation of the axis of symmetry.

  4. Find the coordinates of the vertex.

    Vertex $=$=$\left(\editable{},\editable{}\right)$(,)

  5. Graph the parabola.

    Loading Graph...

 

Graphing in the Form $y=ax^2+bx+c$y=ax2+bx+c

Example 2

Consider the parabola $y=x^2-6x+8$y=x26x+8.

a. Determine the value of the $y$y-intercept.

The $y$y-intercept is located along the $y$y-axis, where $x=0$x=0.

Substituting $x=0$x=0 into our function gives us $y=0^2-6\times0+8$y=026×0+8.

The $y$y-intercept is $8$8.

b. Determine the coordinates of the $x$x-intercepts.

It is easiest to find the $x$x-intercepts by first factorising our quadratic function. If we cannot factorise, we might like to use the quadratic formula instead. 

Factorising gives us $y=\left(x-4\right)\left(x-2\right)$y=(x4)(x2).

And as we saw in the first example, this gives us $x$x-intercepts of $(4,0)$(4,0) and $(2,0)$(2,0).

c. Determine the coordinates of the turning point.

We begin by finding the $x$x value of the turning point and there are a number of ways to do this. Either we can use the vertex formula or we can simply find the midpoint between the two $x$x-intercepts.

Halfway between $(4,0)$(4,0) and $(2,0)$(2,0) is $x=3$x=3.

To the find the $y$y value, we substitute $x=3$x=3 back into our equation (and we're welcome to use the form given to us or the factorised version we created in part (b)).

$y=3^2-6\times3+8$y=326×3+8

$y=-1$y=1

Now that we have all three features, we can plot the points on a graph and join them with a smooth curve.

 

Graphing in the Form $y=a\left(x-h\right)^2+k$y=a(xh)2+k

Example 3

Consider the parabola $y=-\left(x+1\right)^2+4$y=(x+1)2+4.

a. Determine the value of the $y$y-intercept.

Once again, we find the $y$y-intercept by substituting $x=0$x=0 into our function.

$y=-\left(0+1\right)^2+4$y=(0+1)2+4

$y=3$y=3

b. Determine the coordinates of the $x$x-intercepts.

The easiest way to do this is to solve $0=-\left(x+1\right)^2+4$0=(x+1)2+4.

$0$0 $=$= $-\left(x+1\right)^2+4$(x+1)2+4
$-4$4 $=$= $-\left(x+1\right)^2$(x+1)2
$4$4 $=$= $\left(x+1\right)^2$(x+1)2
$x+1$x+1 $=$= $\pm2$±2
$x$x $=$= $1$1
$x$x $=$=

$-3$3

So the $x$x-intercepts are $1,0$1,0 and $-3,0$3,0.

c. Determine the coordinates of the turning point.

Since the function is already in turning point form, we simply read it from the equation and we get $-1,4$1,4.

Now that we have all three features, we can plot the points on a graph and join them with a smooth curve.

 

Example 4

Consider the parabola $y=\left(x+1\right)\left(x-3\right)$y=(x+1)(x3).

  1. Find the $y$y value of the $y$y-intercept.

  2. Find the $x$x values of the $x$x-intercepts.

    Write all solutions on the same line separated by a comma.

  3. State the equation of the axis of symmetry.

  4. Find the coordinates of the vertex.

    Vertex $=$=$\left(\editable{},\editable{}\right)$(,)

  5. Graph the parabola.

    Loading Graph...

Outcomes

NA6-7

Relate graphs, tables, and equations to linear, quadratic, and simple exponential relationships found in number and spatial patterns

91028

Investigate relationships between tables, equations and graphs

What is Mathspace

About Mathspace