A triangle with vertices $A\left(-7,6\right)$A(−7,6), $B\left(-2,6\right)$B(−2,6), and $C\left(-2,1\right)$C(−2,1) undergoes a sequence of transformations.
First the triangle is translated down $4$4 units.
Determine the new coordinates of the vertices after this translation:
$\left(\editable{},\editable{}\right),\left(\editable{},\editable{}\right),\left(\editable{},\editable{}\right)$(,),(,),(,)
Next the triangle is reflected across the $y$y-axis.
Determine the final coordinates of the vertices after the reflection:
$\left(\editable{},\editable{}\right),\left(\editable{},\editable{}\right),\left(\editable{},\editable{}\right)$(,),(,),(,)
A rectangle with vertices $A\left(3,-3\right)$A(3,−3), $B\left(5,-3\right)$B(5,−3), $C\left(5,-7\right)$C(5,−7), and $D\left(3,-7\right)$D(3,−7) undergoes a sequence of transformations.
A triangle with vertices $A\left(-1,4\right)$A(−1,4), $B\left(3,4\right)$B(3,4), and $C\left(-1,1\right)$C(−1,1) undergoes a sequence of transformations.
A rectangle with vertices $A\left(2,6\right)$A(2,6), $B\left(4,6\right)$B(4,6), $C\left(4,2\right)$C(4,2), and $D\left(2,2\right)$D(2,2) undergoes a sequence of transformations.