topic badge

3.02 Simplify numerical expressions

Simplify numerical expressions

Recall the order of operations:

  1. Evaluate operations inside grouping symbols.

    • Grouping symbols may include parentheses (\text{ }), brackets [ \text{ }], absolute value bars | \text{ }|, square root symbols \sqrt{\text{ }}, and fraction bars \frac{⬚}{⬚}.

  2. Evaluate any exponents.

  3. Evaluate any multiplication or division, reading from left to right.

  4. Evaluate any addition or subtraction, reading from left to right.

  5. Consider and check the sign of the final answer, especially if negative values were involved in the calculation.

The order of operations we used for integers extends to all rational numbers.

Here are some of the properties of real numbers that we may need to use while simplifying expressions with the order of operations:

PropertySymbols
\text{Commutative property of addition} a+b=b+a
\text{Commutative property of multiplication} a \cdot b=b \cdot a
\text{Associative property of addition} a+\left(b+c\right) =\left(a+b\right)+c
\text{Associative property of multiplication} a\cdot(b\cdot c)=(a\cdot b)\cdot c
\text{Additive identity} a+0=a \text{ and } 0+a=a
\text{Multiplicative identity} a\cdot 1=a \text{ and }1 \cdot a =a
\text{Additive inverse} a+\left(-a\right)=0 \text{ and } \left(-a\right)+a=0
\text{Multiplicative inverse} {a \cdot \dfrac{1}{a} =1 \text{ and } \dfrac{1}{a} \cdot a=1} \text{; where }a \neq 0
\text{Multiplicative property of zero} a \cdot 0 =0 \text{ and }0 \cdot a =0

Examples

Example 1

Calculate 86+\dfrac{3}{10}\cdot \left(-2\right)

Worked Solution
Create a strategy

Follow the order of operations, starting with multiplication.

Apply the idea
\displaystyle 86+\dfrac{3}{10}\cdot \left(-2\right)\displaystyle =\displaystyle 86-\dfrac{6}{10}Evaluate the multiplication
\displaystyle =\displaystyle \dfrac{860}{10}-\dfrac{6}{10}Write the whole number as a fraction
\displaystyle =\displaystyle \dfrac{854}{10}Evaluate the subtraction
\displaystyle =\displaystyle 85\dfrac{4}{10}Convert the improper fraction to mixed number
\displaystyle =\displaystyle 85\dfrac25Simplify the fraction

Example 2

Calculate \sqrt{25-9} + (0.75 \cdot 2^3) - 1.2 \div 0.4

Worked Solution
Create a strategy

Follow the order of operations, starting inside the grouping symbols. In this expression, the square root and parentheses are grouping symbols.

Apply the idea

\sqrt{25-9} + (0.75 \cdot 2^3) - 1.2 \div 0.4

\displaystyle \text{ }\displaystyle =\displaystyle \sqrt{16} + (0.75 \cdot 2^3) - 1.2 \div 0.4Subtract inside the square root
\displaystyle =\displaystyle 4 + (0.75 \cdot 2^3) - 1.2 \div 0.4Evaluate the square root
\displaystyle =\displaystyle 4 + (0.75 \cdot 8) - 1.2 \div 0.4Evaluate the exponent
\displaystyle =\displaystyle 4 + 6 - 1.2 \div 0.4 Multiply inside the parentheses
\displaystyle =\displaystyle 4 + 6 - 3Evaluate the division
\displaystyle =\displaystyle 10-3Evaluate the addition
\displaystyle =\displaystyle 7Evaluate the subtraction

Example 3

Calculate \dfrac{4\cdot\left(\dfrac{1}{16}\cdot2\right)}{2 \cdot4}

Worked Solution
Create a strategy

Follow the order of operations. Treat the fraction bar as a grouping symbol. The numerator is one group and the denominator is the other group.

Apply the idea
\displaystyle \dfrac{4\cdot\left(\dfrac{1}{2}\cdot16\right)}{2 \cdot4}\displaystyle =\displaystyle \dfrac{4\cdot\left(\dfrac{1}{2}\cdot16\right)}{8}Multiply in the denominator
\displaystyle =\displaystyle \dfrac{4\cdot8}{8}Multiply inside the parentheses
\displaystyle =\displaystyle \dfrac{32}{8}Multiply in the numerator
\displaystyle =\displaystyle 4Evaluate the division

Example 4

Calculate 2.3 + |2 - 6.5| - (1.8 + 0.5)

Worked Solution
Create a strategy

Follow the order of operations, starting with the grouping symbols. In this expression the absolute value bars and parentheses are grouping symbols.

Apply the idea
\displaystyle 2.3 + |2 - 6.5| - (1.8 + 0.5)\displaystyle =\displaystyle 2.3 + |- 4.5| - (2.3)Add or subtract inside the absolute value and parentheses
\displaystyle =\displaystyle 2.3 + 4.5 - (2.3)Evaluate the absolute value
\displaystyle =\displaystyle 2.3 - 2.3 + 4.5Commutative property of addition
\displaystyle =\displaystyle 0 + 4.5Additive inverse
\displaystyle =\displaystyle 4.5Additive identity
Idea summary

When evaluating multiple operations with rational numbers:

  1. Evaluate operations inside grouping symbols.

    • Grouping symbols may include parentheses (\text{ }), brackets [ \text{ }], absolute value bars | \text{ }|, square root symbols \sqrt{\text{ }}, and fraction bars \frac{⬚}{⬚}.

  2. Evaluate any exponents.

  3. Evaluate any multiplication or division, reading from left to right.

  4. Evaluate any addition or subtraction, reading from left to right.

  5. Consider and check the sign of the final answer, especially if negative values were involved in the calculation.

Here are some of the properties of real numbers that we may need to use while simplifying expressions with the order of operations:

PropertySymbols
\text{Commutative property of addition} a+b=b+a
\text{Commutative property of multiplication} a \cdot b=b \cdot a
\text{Associative property of addition} a+\left(b+c\right) =\left(a+b\right)+c
\text{Associative property of multiplication} a\cdot(b\cdot c)=(a\cdot b)\cdot c
\text{Additive identity} a+0=a \text{ and } 0+a=a
\text{Multiplicative identity} a\cdot 1=a \text{ and }1 \cdot a =a
\text{Additive inverse} a+\left(-a\right)=0 \text{ and } \left(-a\right)+a=0
\text{Multiplicative inverse} {a \cdot \dfrac{1}{a} =1 \text{ and } \dfrac{1}{a} \cdot a=1} \text{; where }a \neq 0
\text{Multiplicative property of zero} a \cdot 0 =0 \text{ and }0 \cdot a =0

Outcomes

7.PFA.2

The student will simplify numerical expressions, simplify and generate equivalent algebraic expressions in one variable, and evaluate algebraic expressions for given replacement values of the variables.

7.PFA.2a

Use the order of operations and apply the properties of real numbers to simplify numerical expressions. Exponents are limited to 1, 2, 3, or 4 and bases are limited to positive integers. Expressions should not include braces { } but may include brackets [ ] and absolute value bars | |. Square roots are limited to perfect squares.*

What is Mathspace

About Mathspace