Consider the function $f\left(x\right)=x-6$f(x)=x−6.
Which of the following is an inverse function for $f\left(x\right)$f(x)?
$f^{-1}\left(x\right)=\frac{x}{6}$f−1(x)=x6
$f^{-1}\left(x\right)=6x$f−1(x)=6x
$f^{-1}\left(x\right)=x+6$f−1(x)=x+6
$f^{-1}\left(x\right)=\sqrt[6]{x}$f−1(x)=6√x
$f^{-1}\left(x\right)=6-x$f−1(x)=6−x
$f^{-1}\left(x\right)=x^6$f−1(x)=x6
Consider the function $f\left(x\right)=8x-3$f(x)=8x−3.
A function $f\left(x\right)$f(x) has an inverse given by $f^{-1}\left(x\right)=x+4$f−1(x)=x+4.
A function $f\left(x\right)$f(x) has an inverse given by $f^{-1}\left(x\right)=4x$f−1(x)=4x.