Given that $ax^2-15x+25=\left(2x-5\right)\left(x-5\right)$ax2−15x+25=(2x−5)(x−5) for all values of $x$x, solve for $a$a.
$x^2+6x+11=A\left(x+3\right)^2+B$x2+6x+11=A(x+3)2+B for all real values of $x$x.
Given that $x^2+6x+14=A\left(x+B\right)^2+C$x2+6x+14=A(x+B)2+C for all real values of $x$x, answer the following.
Given that $3x^2+12x+17=A\left(x+B\right)^2+C$3x2+12x+17=A(x+B)2+C for all real values of $x$x, answer the following.