Given the following values:
$f\left(2\right)=4$f(2)=4, $f\left(7\right)=14$f(7)=14, $f\left(9\right)=18$f(9)=18, $f\left(8\right)=16$f(8)=16
$g\left(2\right)=8$g(2)=8, $g\left(7\right)=28$g(7)=28, $g\left(9\right)=36$g(9)=36, $g\left(8\right)=32$g(8)=32
Find $\left(f+g\right)$(f+g)$\left(2\right)$(2)
Given the following values:
$f\left(2\right)=4$f(2)=4, $f\left(5\right)=10$f(5)=10, $f\left(9\right)=18$f(9)=18, $f\left(6\right)=12$f(6)=12
$g\left(2\right)=8$g(2)=8, $g\left(5\right)=20$g(5)=20, $g\left(9\right)=36$g(9)=36, $g\left(6\right)=24$g(6)=24
Let $f\left(x\right)=x^2-1$f(x)=x2−1 and $g\left(x\right)=5x-1$g(x)=5x−1.
Let $f\left(x\right)=x^2+6$f(x)=x2+6 and $g\left(x\right)=5x-3$g(x)=5x−3.