Consider the triangle shown below.
Complete the steps which calculate the length $AC$AC:
$AC^2=AB^2+BC^2$AC2=AB2+BC2
$AC^2=$AC2=$\left(\editable{}\right)^2+\left(\editable{}\right)^2$()2+()2
$AC^2=$AC2=$\editable{}+\editable{}$+
$AC^2=$AC2=$\editable{}$
Hence find the exact length of $AC$AC.
Use the triangle and the Pythagorean theorem to complete the following:
The points $P$P $\left(-3,5\right)$(−3,5), $Q$Q $\left(-3,2\right)$(−3,2) and $R$R $\left(1,2\right)$(1,2) are the vertices of a right triangle, as shown on the number plane.
The points $P$P $\left(-4,10\right)$(−4,10), $Q$Q $\left(-4,7\right)$(−4,7) and $R$R $\left(-8,7\right)$(−8,7) are the vertices of a right triangle, as shown on the number plane.