topic badge
AustraliaVIC
VCE 11 Methods 2023

10.03 Properties of graphs

Worksheet
Functions and gradient functions
1

Consider the graph of the function \\ f \left( x \right) = - \left(x - 4\right)^{3} + 7:

a

State the x-value of the stationary point of f \left( x \right).

b

State the domain where f \left( x \right) is decreasing.

1
2
3
4
5
6
7
8
x
1
2
3
4
5
6
7
8
9
10
11
f (x)
2

State whether the rate of change of the following functions is positive, negative, or zero for all values of x:

a
f \left( x \right) = - 8
b
f \left( x \right) = 4 x - 1
c
f \left( x \right) = - x + 10
3

For each of the following functions:

i

State the x-value of the stationary point of f \left( x \right).

ii

State the domain where f \left( x \right) is increasing.

iii

State the domain where f \left( x \right) is decreasing.

a

f \left( x \right) = - 2 \left(x + 2\right)^{2} + 4

-5
-4
-3
-2
-1
1
x
-9
-8
-7
-6
-5
-4
-3
-2
-1
1
2
3
4
f (x)
b

f \left( x \right) = \left(x + 4\right) \left(x - 2\right)

-5
-4
-3
-2
-1
1
2
3
x
-8
-6
-4
-2
2
4
6
8
f (x)
c

f \left( x \right) = \dfrac{x^{3}}{3} - x-1

-5
-4
-3
-2
-1
1
2
3
4
5
x
-8
-6
-4
-2
2
4
6
8
f (x)
d

g \left( x \right) = - \left(x - 3\right)^{2} \left(x + 1\right)^{2}

-3
-2
-1
1
2
3
4
x
-18
-16
-14
-12
-10
-8
-6
-4
-2
g (x)
e

f \left( x \right)

-7
-6
-5
-4
-3
-2
-1
1
2
x
-7
-6
-5
-4
-3
-2
-1
1
2
3
f(x)
f

f \left( x \right)

-6
-5
-4
-3
-2
-1
1
2
3
4
x
2
4
6
y
4

Consider the function y = 4 x - 3.

a

Find the gradient function.

b

Sketch the graph of the gradient function.

5

For each of the following functions, sketch the gradient function:

a
f \left( x \right) = - 5 x + 8
-8
-6
-4
-2
2
4
6
8
x
-8
-6
-4
-2
2
4
6
8
f(x)
b

y = x^{2}

-8
-6
-4
-2
2
4
6
8
x
-8
-6
-4
-2
2
4
6
8
y
c

f \left( x \right) = \left(x + 1\right)^{2}

-5
-4
-3
-2
-1
1
2
3
4
5
x
-5
-4
-3
-2
-1
1
2
3
4
5
f(x)
d

y = x^{2} - 1

-5
-4
-3
-2
-1
1
2
3
4
5
x
-5
-4
-3
-2
-1
1
2
3
4
5
y
e

f \left( x \right) = x \left(x - 4\right) \left(x + 2\right)

-8
-6
-4
-2
2
4
6
8
x
-18
-16
-14
-12
-10
-8
-6
-4
-2
2
4
6
8
f (x)
6

Consider the function y = \left(x - 5\right)^{2} - 3 graphed below:

a

State the x-intercept of the gradient function.

b

For x \lt 5, state whether the values of the gradient function are above or below the x-axis.

c

For x \gt 5, state whether the values of the gradient function are above or below the x-axis.

-1
1
2
3
4
5
6
7
8
9
10
11
x
-4
-3
-2
-1
1
2
3
4
y
7

Consider the function y = - \left(x + 7\right)^{2} + 5 graphed below:

a

State the x-intercept of the gradient function.

b

For x \lt - 7, state whether the values of the gradient function are above or below the x-axis.

c

For x > - 7, state whether the values of the gradient function are above or below the x-axis.

-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
x
-4
-3
-2
-1
1
2
3
4
5
y
8

Consider the function y = - x^{2} - 10 x - 28 graphed below:

a

State the x-intercept of the gradient function.

b

For x \lt - 5, state whether the values of the gradient function are above or below the x-axis.

c

For x \gt - 5, state whether the values of the gradient function are above or below the x-axis.

-9
-8
-7
-6
-5
-4
-3
-2
-1
x
-9
-8
-7
-6
-5
-4
-3
-2
-1
y
9

Consider the function y = x^{2} + 10 x + 21 graphed below:

a

State the x-intercept of the gradient function.

b

For x \lt - 5, state whether the values of the gradient function are above or below the x-axis.

c

For x \gt - 5, state whether the values of the gradient function are above or below the x-axis.

-9
-8
-7
-6
-5
-4
-3
-2
-1
1
x
-4
-3
-2
-1
1
2
3
4
y
10

Consider the function y = \left(x - 5\right)^{3} + 3:

a

State the coordinates of the point of inflection.

b

State the gradient of the curve at this point.

c

What feature does the gradient function have at x = 5?

d

For x \lt 5, state whether the values of the gradient function are above or below the x-axis.

e

For x \gt 5, state whether the values of the gradient function are above or below the x-axis.

f

What type of point is on the gradient function at x = 5?

1
2
3
4
5
6
7
8
9
x
1
2
3
4
5
6
y
11

Consider the function y = - \left(x + 7\right)^{3} - 3 :

a

State the coordinates of the point of inflection.

b

State the gradient of the curve at this point.

c

What feature does the gradient function have at x = - 7?

d

For x \lt - 7, state whether the values of the gradient function are above or below the x-axis.

e

For x \gt - 7, state whether the values of the gradient function are above or below the x-axis.

f

What type of point is on the gradient function at x = - 7?

-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
1
x
-6
-5
-4
-3
-2
-1
y
12

Consider the graph of the gradient function f' \left( x \right):

What can be said about the graph of f \left(x\right)?

-8
-6
-4
-2
2
4
6
8
x
-8
-6
-4
-2
2
4
6
8
f'(x)
13

For each of the following gradient functions, sketch a graph of a possible original function:

a
-5
-4
-3
-2
-1
1
2
3
4
5
x
-5
-4
-3
-2
-1
1
2
3
4
5
f'(x)
b
-5
-4
-3
-2
-1
1
2
3
4
5
x
-5
-4
-3
-2
-1
1
2
3
4
5
f'(x)
c
-5
-4
-3
-2
-1
1
2
3
4
5
x
-5
-4
-3
-2
-1
1
2
3
4
5
f'(x)
d
-5
-4
-3
-2
-1
1
2
3
4
5
x
-5
-4
-3
-2
-1
1
2
3
4
5
f'(x)
e
-5
-4
-3
-2
-1
1
2
3
4
5
x
-5
-4
-3
-2
-1
1
2
3
4
5
f'(x)
Types of stationary points
14

State the type of point that matches the following descriptions:

a

A point where the curve changes from decreasing to increasing.

b

A point where the curve changes from increasing to decreasing.

c

A point where the tangent is horizontal and the concavity changes about the point.

15

For each of the following functions:

i

Find the derivative.

ii

Find the coordinates of any stationary points.

iii

Classify each stationary point.

a
y = - 6 x^{2} + 84 x - 29
b
y = x^{3} - 21 x^{2} + 144 x - 19
c
f \left( x \right) = \left(x + 3\right)^{2} \left(x + 6\right)
d
f \left( x \right) = \left(x + 5\right)^{3} + 4
e
f \left( x \right) = - \dfrac{x^{3}}{3} + \dfrac{13 x^{2}}{2} - 30 x + 10
f
f \left( x \right) = \left( 4 x + 5\right) \left(x + 1\right)
g

f \left( x \right) = 134 - 300 x + 240 x^{2} - 64 x^{3}

h

f \left( x \right) = \left(x^{2} - 9\right)^{2} + 4

16

Consider the parabola with equation y = 5 + x - x^{2}.

a

Find the coordinates of the vertex of the parabola.

b

State the gradient of the tangent to the parabola at the vertex.

c

What type of stationary point is at the vertex of this parabola?

17

Consider the function f \left( x \right) = x^{2} + 4 x + 9.

a

Find an equation for the gradient function f' \left( x \right).

b

State the interval in which the function is increasing.

c

State the interval in which the function is decreasing.

d

Find the coordinates of the stationary point.

e

Classify the stationary point.

18

Consider the function f \left( x \right) = 4 x^{3} + 5 x^{2} - 4.

a

Find an equation for the gradient function f' \left( x \right).

b

Find the coordinates of the stationary points.

c

Complete the table of values:

x-2-\dfrac{5}{6}-\dfrac{1}{2}01
f'\left( x \right)00
d

Hence determine the:

i

Local minimum

ii

Local maximum

e

Is - 4 the absolute minimum value of the function? Explain your answer.

19

Consider the function f \left( x \right) = 3 x^{2} - 54 x + 241.

a

Find f' \left( x \right).

b

Find the x-coordinate of the stationary point.

c

Classify the stationary point.

Graphs of functions
20

Sketch the linear function for which f \left( 0 \right) = 1 and f' \left( 2 \right) = 3.

21

Sketch the quadratic function, f \left( x \right), that satisfies the following conditions:

a
  • f \left( 0 \right) = - 18
  • f \left( 3 \right) = 0
  • f \left( 6 \right) = 6
  • f' \left( 6 \right) = 0
  • f' \left( x \right) > 0 for x < 6

b
  • f \left( 0 \right) = 16
  • f \left( 2 \right) = 0
  • f \left( 5 \right) = - 9
  • f' \left( 5 \right) = 0
  • f' \left( x \right) < 0 for x < 5

c
  • f \left( 0 \right) = 5
  • f \left( - 2 \right) = 0
  • f' \left( 3 \right) = 0
  • f' \left( x \right) > 0 for x < 3

d
  • f \left( 0 \right) = 10

  • f \left( - 2 \right) = 0

  • f \left( - 6 \right) = - 8

  • f' \left( - 6 \right) = 0

  • f' \left( x \right) < 0 for x < - 6

22

Sketch the cubic function, f \left( x \right), that satisfies the following conditions:

a
  • f \left( 0 \right) = 7
  • f \left( - 2 \right) = 0
  • f \left( - 4 \right) = - 1
  • f' \left( - 4 \right) = 0
  • f' \left( x \right) > 0 for x < - 4

  • f' \left( x \right) > 0 for x > - 4

b
  • f' \left( 2 \right) = 0
  • f' \left( - 3 \right) = 0
  • f' \left( x \right) < 0 for - 3 < x < 2

  • f' \left( x \right) > 0 elsewhere

23

Sketch the quartic function, f \left( x \right), that satisfies the following conditions:

a
  • f' \left( - 1 \right) = 0
  • f' \left( 4 \right) = 0
  • f' \left( x \right) > 0 for x > 4

  • f' \left( x \right) < 0 elsewhere

b
  • f \left( 0 \right) = 0
  • f' \left( 0 \right) = 0
  • f' \left( 2 \right) = 0
  • f' \left( - 2 \right) = 0
  • f' \left( x \right) > 0 for x < - 2, 0 < x < 2

  • f' \left( x \right) < 0 elsewhere

24

Consider the equation of the parabola y = 3 x^{2} - 18 x + 24.

a

Find the x-intercepts.

b

Find the y-intercept.

c

Find \dfrac{dy}{dx}.

d

Find the stationary point.

e

Classify the stationary point.

f

Sketch the graph of the parabola.

25

For each of the following functions:

i

Find the y-intercept.

ii

Find the x-intercepts.

iii

Find f' \left( x \right).

iv

Hence find the x-coordinates of the stationary points.

v

Classify the stationary points.

vi

Sketch the graph of the function.

a
f \left( x \right) = 9 x^{2} + 18 x - 16
b
f \left( x \right) = \left( 4 x + 5\right)^{2} \left(x - 1\right)
c
f \left( x \right) = \left( 2 x - 1\right)^{2} \left(1 - x\right)
d
f \left( x \right) = \left(x + 2\right)^{3}-1
e
f \left( x \right) = x^{3} + 11 x^{2} + 24 x
f
f \left( x \right) = \left(x^{2} - 4\right)^{2} + 4
g
f(x)=2\left(x-1\right)^3 - 16
h
f(x)=x^4 - 4x^3
i
f(x) = x^3 + 5x^2
j
f(x)=x^2(x-3)^2
26

Sketch the graph of the following functions showing all stationary points:

a
y=2x^3-12x^2+18x-8
b
y=3x^5-20x^3 + 6
c
y=2x^3+3x^2-36x+5
d
y=20+4x^3-x^4
e
y=-3x^4+16x^3-24x^2+30
f
y=x^3-6x^2-15x+7
Sign up to access Worksheet
Get full access to our content with a Mathspace account

Outcomes

U2.AoS3.5

applications of differentiation, including finding instantaneous rates of change, stationary values of functions, local maxima or minima, points of inflection, analysing graphs of functions including motion graphs, and solving maximum and minimum problems with consideration of modelling domain and local and global maxima and minima

U2.AoS3.9

the sign of the gradient at and near a point and its interpretation in terms of key features of a graph of simple polynomial functions

U2.AoS3.14

use derivatives to assist in the sketching of graphs of simple polynomial functions and to solve simple maximum and minimum optimisation problems

What is Mathspace

About Mathspace