topic badge
AustraliaVIC
VCE 11 Methods 2023

7.04 Graphs of exponential functions

Lesson

A base form of an exponential function is $f\left(x\right)=a^x$f(x)=ax, where $a$a is a positive number and the variable is in the exponent. Unlike linear functions which increase or decrease by a constant, exponential functions increase or decrease by a constant multiplier. Let's first look at cases for $a>1$a>1, which describe exponential growth, and identify key characteristics of such functions.

 

Graphs of $y=a^x$y=ax for $a>1$a>1

Create a table for the function $y=2^x$y=2x:

$x$x $-4$4 $-3$3 $-2$2 $-1$1 $0$0 $1$1 $2$2 $3$3 $4$4
$y$y $\frac{1}{16}$116 $\frac{1}{8}$18 $\frac{1}{4}$14 $\frac{1}{2}$12 $1$1 $2$2 $4$4 $8$8 $16$16

Notice the familiar powers of two, and as $x$x increases by one, the $y$y values are increasing by a constant multiplier - here they are doubling. This causes the differences between successive $y$y values to grow and hence, $y$y is increasing at an increasing rate. Let's look at what this function looks like when it is graphed:

Key features:

  • As the $x$x-values increase, the $y$y-values increase at an increasing rate.
  • The $y$y-intercept is $\left(0,1\right)$(0,1), since when $x=0$x=0, $y=2^0=1$y=20=1.
  • As $x$x becomes a larger and larger negative number, $y$y becomes a smaller and smaller fraction. In the graph, notice that as $x$x becomes a larger negative number, the graph approaches but does not reach the line $y=0$y=0. Hence, $y=0$y=0 is a horizontal asymptote. This asymptotic behaviour can be written mathematically as follows: As $x\ \rightarrow-\infty,y\ \rightarrow0^+$x ,y 0+ (As $x$x approaches negative infinity, $y$y approaches zero from above).
  • Domain: $x$x is any real number.
  • Range: $y>0$y>0

How does this compare to other values of $a$a? Let's graph $y=2^x$y=2x, $y=3^x$y=3x and $y=5^x$y=5x on the same graph. You can create a table for each to confirm the values sketched in the graph below:

All of the key features mentioned above were not unique to the graph of $y=2^x$y=2x.

Key features:

  • As the $x$x-values increase, the $y$y-values increase at an increasing rate.
  • The $y$y-intercept is $\left(0,1\right)$(0,1), since when $x=0$x=0, $y=a^0=1$y=a0=1, for any positive value $a$a.
  • $y=0$y=0 is a horizontal asymptote for each graph. As $x\ \rightarrow-\infty,y\ \rightarrow0^+$x ,y 0+ 
  • Domain: $x$x is any real number.
  • Range: $y>0$y>0

The difference is that for $x>0$x>0 the higher the $a$a value the faster the graph increases. Each graph goes through the point $\left(1,a\right)$(1,a) and the larger the $a$a value, the higher this point will be.

For $x<0$x<0, the higher the $a$a value and the quicker the graph approaches the horizontal asymptote. 

 

Practice questions

question 1

Consider the function $y=3^x$y=3x.

  1. Complete the table of values.

    $x$x $-5$5 $-4$4 $-3$3 $-2$2 $-1$1 $0$0 $1$1 $2$2 $3$3 $5$5 $10$10
    $y$y $\frac{1}{243}$1243 $\frac{1}{81}$181 $\frac{1}{27}$127 $\editable{}$ $\editable{}$ $\editable{}$ $\editable{}$ $\editable{}$ $\editable{}$ $\editable{}$ $\editable{}$
  2. Is $y=3^x$y=3x an increasing function or a decreasing function?

    Increasing

    A

    Decreasing

    B
  3. How would you describe the rate of increase of the function?

    As $x$x increases, the function increases at a constant rate.

    A

    As $x$x increases, the function increases at a faster and faster rate.

    B

    As $x$x increases, the function increases at a slower and slower rate.

    C
  4. What is the domain of the function?

    all real $x$x

    A

    $x\ge0$x0

    B

    $x<0$x<0

    C

    $x>0$x>0

    D
  5. What is the range of the function?

question 2

Consider the graph of the equation $y=4^x$y=4x.

Loading Graph...
A plot of $y=4^x$y=4x on a Cartesian plane is an upward-sloping curve that represents exponential growth. As x increases, the y values rise rapidly. The graph passes through the point (0, 1), since $4^0=1$40=1, and approaches the x-axis asymptotically from above as x decreases, but never touches the x-axis. The curve is smooth and continuous.
  1. What can we say about the $y$y-value of every point on the graph?

    The $y$y-value of most points of the graph is greater than $1$1.

    A

    The $y$y-value of every point on the graph is positive.

    B

    The $y$y-value of every point on the graph is an integer.

    C

    The $y$y-value of most points on the graph is positive, and the $y$y-value at one point is $0$0.

    D
  2. As the value of $x$x gets large in the negative direction, what do the values of $y$y approach but never quite reach?

    $4$4

    A

    $-4$4

    B

    $0$0

    C
  3. What do we call the horizontal line $y=0$y=0, which $y=4^x$y=4x gets closer and closer to but never intersects?

    A horizontal asymptote of the curve.

    A

    An $x$x-intercept of the curve.

    B

    A $y$y-intercept of the curve.

    C

 

Graphs of $y=a^x$y=ax for $00<a<1

Let's create a table for the function $y=\left(\frac{1}{2}\right)^x$y=(12)x:

$x$x $-4$4 $-3$3 $-2$2 $-1$1 $0$0 $1$1 $2$2 $3$3 $4$4
$y$y $16$16 $8$8 $4$4 $2$2 $1$1 $\frac{1}{2}$12 $\frac{1}{4}$14 $\frac{1}{8}$18 $\frac{1}{16}$116

Again, notice the familiar powers of two but this time as $x$x increases by one the $y$y values are decreasing by a constant multiplier - here they are halving. The differences between successive $y$y values is shrinking and hence, $y$y is decreasing at a decreasing rate. Look at what this function looks like when it is graphed:

Key features:

  • As the $x$x-values increase, the $y$y-values decrease at a decreasing rate.
  • The $y$y-intercept is still $\left(0,1\right)$(0,1), since when $x=0$x=0, $y=\left(\frac{1}{2}\right)^0=1$y=(12)0=1.
  • As $x$x becomes a larger and larger positive number, $y$y becomes a smaller and smaller fraction. So again we have $y=0$y=0 as a horizontal asymptote. However, this time the graph approaches this line as $x$x gets larger. This asymptotic behaviour can be written mathematically as follows: As $x\ \rightarrow\infty,y\ \rightarrow0^+$x ,y 0+ (As $x$x approaches infinity, $y$y approaches zero from above).

And as before:

  • Domain: $x$x is any real number.
  • Range: $y>0$y>0

All graphs of the form $y=a^x$y=ax where $00<a<1 will have these similar key features. They will all be exponential decreasing (decaying) functions, since our multiplier is a fraction.

How did the graph and table of $y=\left(\frac{1}{2}\right)^x$y=(12)x compare to that of $y=2^x$y=2x? Notice that they are a reflection of each other in the $y$y-axis. The values in the tables were reversed and the $y$y-value for $y=\left(\frac{1}{2}\right)^x$y=(12)x at $x=k$x=k was the same as $y=2^x$y=2x at $x=-k$x=k. This makes sense if using the index laws to rewrite $y=\left(\frac{1}{2}\right)^x$y=(12)x as follows:

Let $g(x)=\left(\frac{1}{2}\right)^x$g(x)=(12)x and $f(x)=2^x$f(x)=2x

$g(x)$g(x) $=$= $\left(\frac{1}{2}\right)^x$(12)x
  $=$= $\left(2^{-1}\right)^x$(21)x
  $=$= $\left(2\right)^{-x}$(2)x
  $=$= $f\left(-x\right)$f(x)

In general, for $a>0$a>0 the graph of $g\left(x\right)=\left(\frac{1}{a}\right)^x$g(x)=(1a)x is equivalent to $g\left(x\right)=a^{-x}$g(x)=ax, which is a decreasing exponential function and a reflection of the graph $f(x)=a^x$f(x)=ax in the $y$y-axis. 

 

Practice questions

Question 3

Consider the graphs of the functions $y=4^x$y=4x and $y=\left(\frac{1}{4}\right)^x$y=(14)x.

Loading Graph...

Loading Graph...
  1. Which function is an increasing function?

    $y=\left(\frac{1}{4}\right)^x$y=(14)x

    A

    $y=4^x$y=4x

    B
  2. How would you describe the rate of increase of $y=4^x$y=4x?

    $y$y is increasing at a constant rate

    A

    $y$y is increasing at a decreasing rate

    B

    $y$y is increasing at an increasing rate

    C

Question 4

Consider the function $y=\left(\frac{1}{2}\right)^x$y=(12)x

  1. Which two functions are equivalent to $y=\left(\frac{1}{2}\right)^x$y=(12)x ?

    $y=\frac{1}{2^x}$y=12x

    A

    $y=2^{-x}$y=2x

    B

    $y=-2^x$y=2x

    C

    $y=-2^{-x}$y=2x

    D
  2. Sketch a graph of $y=2^x$y=2x on the coordinate plane.

    Loading Graph...

  3. Using the result of the first part, sketch $y=\left(\frac{1}{2}\right)^x$y=(12)x on the same coordinate plane.

    Loading Graph...

Question 5

Consider the function $y=8^{-x}$y=8x.

  1. Can the value of $y$y ever be negative?

    Yes

    A

    No

    B
  2. As the value of $x$x increases towards $\infty$ what value does $y$y approach?

    $8$8

    A

    $-\infty$

    B

    $\infty$

    C

    $0$0

    D
  3. As the value of $x$x decreases towards $-\infty$, what value does $y$y approach?

    $0$0

    A

    $\infty$

    B

    $8$8

    C

    $-\infty$

    D
  4. Can the value of $y$y ever be equal to $0$0?

    Yes

    A

    No

    B
  5. Determine the $y$y-value of the $y$y-intercept of the curve.

  6. How many $x$x-intercepts does the curve have?

  7. Which of the following could be the graph of $y=8^{-x}$y=8x?

    Loading Graph...

    A

    Loading Graph...

    B

    Loading Graph...

    C

    Loading Graph...

    D

Outcomes

U1.AoS1.2

qualitative interpretation of features of graphs of functions, including those of real data not explicitly represented by a rule, with approximate location of any intercepts, stationary points and points of inflection

U2.AoS1.19

sketch by hand the unit circle, graphs of the sine, cosine and exponential functions, and simple transformations of these to the form Af(bx)+c , sketch by hand graphs of log_a(x) and the tangent function, and identify any vertical or horizontal asymptotes

U2.AoS1.20

draw graphs of circular, exponential and simple logarithmic functions over a given domain and identify and discuss key features and properties of these graphs, including any vertical or horizontal asymptotes

U2.AoS1.17

the key features and properties of the exponential functions, logarithmic functions and their graphs, including any vertical or horizontal asymptotes

What is Mathspace

About Mathspace