topic badge
AustraliaVIC
VCE 12 Methods 2023

3.03 Tangent functions

Lesson

$Tan\left(\theta\right)$Tan(θ)

The tangent function can be defined as follows:

  • The tangent of the angle can be geometrically defined to be $y$y-coordinate of point $Q$Q, where $Q$Q is the intersection of the extension of the line $OP$OP and the tangent of the circle at $\left(1,0\right)$(1,0)
  • Using similar triangles we can also define this algebraically as the ratio: $\tan\theta=\frac{\sin\theta}{\cos\theta}$tanθ=sinθcosθ
  • This also represents the slope of the line that forms the angle $\theta$θ to the positive $x$x-axis

 

The graph of $\tan\theta$tanθ


 

Key features

Key features of the graph of $y=\tan\left(\theta\right)$y=tan(θ) are:

  • Asymptotes: vertical asymptotes appear at $\theta=\frac{\pi}{2}+n\pi$θ=π2+nπ, for $n$n any integer
  • Axis intercepts: vertical axis intercept: $\left(0,0\right)$(0,0), horizontal axis intercepts at: $\theta=n\pi$θ=nπ, for $n$n any integer - at each intercept there is a point of inflection
  • Period: The period of this graph can be found as the distance between two successive asymptotes. Hence, the period is: $\pi$π
  • Range: This graph is unbounded. Hence, the range is: $\left(-\infty,\infty\right)$(,)
  • Domain: The function is undefined at each vertical asymptote. Hence, the domain is: $\lbrace\theta:\theta\in\Re,\theta\ne n\pi\rbrace${θ:θ,θnπ}, where $n$n is any integer
  • Key points: useful for graphing, the function passes through $\left(\frac{\pi}{4},1\right)$(π4,1) and $\left(-\frac{\pi}{4},-1\right)$(π4,1)
  • Symmetry: The tangent graph is an odd function, that is $\tan\left(-\theta\right)=-\tan\theta$tan(θ)=tanθ. This also means the graph has point symmetry about the origin (or any point of inflection) by $180^\circ$180°

The asymptotes of the function are where the angle $\theta$θ would cause the line $OP$OP to be vertical and hence the slope is undefined. We can also see this through the definition $\tan\theta=\frac{\sin\theta}{\cos\theta}$tanθ=sinθcosθ. The function is undefined where $\cos\theta=0$cosθ=0 and the graph approaches the vertical lines at these values forming asymptotes.

The fact that the tangent function repeats at intervals of $\pi$π can be verified by considering the unit circle diagram. Either by considering the slope of the line $OP$OP and how the slope will be the same for a point at an angle of $\theta$θ or at at angle of $\theta+\pi$θ+π. Or we can consider this algebraically by looking at the ratio $\frac{\sin\theta}{\cos\theta}$sinθcosθ. If $\pi$π is added to an angle $\theta$θ, then the diagram below shows that $\sin(\theta+\pi)$sin(θ+π) has the same magnitude as $\sin\theta$sinθ but opposite sign. The same relation holds between $\cos(\theta+\pi)$cos(θ+π) and $\cos\theta$cosθ.

We make use of the definition: $$

$\tan(\theta+\pi)$tan(θ+π) $=$= $\frac{\sin(\theta+\pi)}{\cos(\theta+\pi)}$sin(θ+π)cos(θ+π)
  $=$= $\frac{-\sin\theta}{-\cos\theta}$sinθcosθ
  $=$= $\tan\theta$tanθ

 

Practice question

question 1

Consider the graph of $y=\tan x$y=tanx for $-2\pi\le x\le2\pi$2πx2π.

Loading Graph...

  1. How would you describe the graph?

    Periodic

    A

    Decreasing

    B

    Even

    C

    Linear

    D
  2. Which of the following is not appropriate to refer to in regard to the graph of $y=\tan x$y=tanx?

    Amplitude

    A

    Range

    B

    Period

    C

    Asymptotes

    D
  3. The period of a periodic function is the length of $x$x-values that it takes to complete one full cycle.

    Determine the period of $y=\tan x$y=tanx in radians.

  4. State the range of $y=\tan x$y=tanx.

    $-\infty<y<

    A

    $y>0$y>0

    B

    $\frac{-\pi}{2}π2<y<π2

    C

    $-\piπ<y<π

    D
  5. As $x$x increases, what would be the next asymptote of the graph after $x=\frac{7\pi}{2}$x=7π2?

Outcomes

U34.AoS1.14

identify key features and properties of the graph of a function or relation and draw the graphs of specified functions and relations, clearly identifying their key features and properties, including any vertical or horizontal asymptotes

U34.AoS1.10

the concepts of domain, maximal domain, range and asymptotic behaviour of functions

What is Mathspace

About Mathspace