topic badge
AustraliaVIC
VCE 12 Methods 2023

5.09 Differentiation and logarithms

Interactive practice questions

Consider the graph of $y=\ln x$y=lnx.

Loading Graph...

a

Is the function increasing or decreasing?

Increasing

A

Decreasing

B
b

Is the gradient to the curve negative at any point on the curve?

No

A

Yes

B
c

Which of the following best completes this sentence?

"As $x$x increases, the gradient of the tangent..."

decreases at a constant rate.

A

increases at an increasing rate.

B

increases at a constant rate.

C

decreases at an increasing rate.

D

increases at a decreasing rate.

E

decreases at a decreasing rate.

F
d

Which of the following best completes the sentence?

"As $x$x gets closer and closer to $0$0, the gradient of the tangent..."

increases towards a fixed value.

A

decreases towards $-\infty$.

B

decreases towards $0$0.

C

increases towards $\infty$.

D
e

We have found that the gradient function must be a strictly positive function, and it must also be a function that decreases at a decreasing rate. What kind of function could it be?

Quadratic, of the form $y'=ax^2$y=ax2.

A

Exponential, of the form $y'=a^{-x}$y=ax.

B

Linear, of the form $y=ax$y=ax.

C

Hyperbolic, of the form $y'=\frac{a}{x}$y=ax.

D
Easy
2min

Find the derivative of $y=7\ln x$y=7lnx.

Easy
< 1min

Differentiate $y=\ln6x$y=ln6x.

Easy
< 1min

In this question, we will be calculating the gradient of the tangent line to the curve $y=\ln2x$y=ln2x at $x=5$x=5.

Easy
< 1min
Sign up to access Practice Questions
Get full access to our content with a Mathspace account

Outcomes

U34.AoS3.2

derivatives of 𝑥^n, e^x, log_e(x), sin (𝑥), cos(𝑥) and tan (𝑥)

What is Mathspace

About Mathspace