topic badge
AustraliaVIC
VCE 12 Methods 2023

5.03 The product rule

Worksheet
Product rule
1

To differentiate y = x^{6} \left(x^{4} + 4\right) using the product rule, let u = x^{6} and v = x^{4} + 4, then:

a

Find u'.

b

Find v'.

c

Hence, find \dfrac{dy}{dx}.

2

Consider the function y = x^{3} \left(x^{2} + 9\right).

a

Differentiate y by first expanding the brackets.

b

Differentiate y using the product rule, letting u = x^{3} and v = x^{2} + 9.

3

Consider the function y = \left(x + 5\right) \left(x + 9\right).

a

Differentiate y by first expanding the brackets.

b

Differentiate y by using the product rule.

c

Find the gradient at x = 3.

4

Differentiate the following functions:

a

f \left( x \right) = \left( 3 x - 2\right) \left( 4 x - 5\right)

b

g \left( t \right) = \left( 2 t^{3} - 3\right) \left(3 - t\right)

c

g \left( y \right) = \left( 7 y^{4} - y^{2}\right) \left(y^{2} - 5\right)

d

f \left( x \right) = \left(x^{\frac{4}{3}} + 6 \sqrt{x}\right) \left( 6 x + 3\right)

e

f \left( x \right) = x \sqrt{3 - x}

f

f \left( x \right) = \sqrt[3]{x^{2}} \left( 2 x - x^{2}\right)

g

f \left( x \right) = x^{\frac{1}{3}} \left(1 - x\right)^{\frac{2}{3}}

h

y = \left(2 + \sqrt{x}\right) \left(6 - x^{2}\right)

i

y = \left(1 + \dfrac{1}{x}\right) \left(3 + x - x^{2}\right)

j

y = x^{3} \left( 5 x + 3\right)^{7}

k

y = 6 x^{5} \left(x^{2} + 3\right)^{3}

l

y = 3 x \left(x^{2} + x + 1\right)^{9}

m

y = \left( 8 x - 9\right)^{5} \left( 5 x + 7\right)^{7}

n

y = \left( 3 x + 2\right) \sqrt{5 + 4 x}

o

y = 8 x \left(5 + 8 x\right)^{\frac{7}{4}} - 3

p

y = 8 x^{5} \sqrt{ 8 x + 3}

q

y = 6 x \sqrt{x + 1}

r

y = - 4 x \sqrt{1 - 2 x}

5

Consider the function y = \left( 4 x - 3\right) \left( 5 x - 2\right).

a

Differentiate y.

b

Hence, differentiate f \left( x \right) = x^{3} \left( 4 x - 3\right) \left( 5 x - 2\right).

Applications
6

Consider the function g \left( x \right) = x^{3} f \left( x \right), where f \left( x \right) is a function of x. Given that f \left( 3 \right) = 1 and f' \left( 3 \right) = - 3, find g' \left( 3 \right).

7

The derivative of f \left( x \right) = \left( 3 x^{n} + 4\right) \left( 5 x^{2} - 2 x\right) is of degree 5. Find the value of n.

8

Consider the function f \left( x \right) = \left(x^{2} - 3 x\right) \left( 2 x - 5\right).

a

Find f \left( 3 \right).

b

Find f' \left( 0 \right).

c

Find f' \left( - 3 \right).

9

For each of the following functions:

i

Identify possible factors u and v for the function.

ii

Differentiate the function. Give your answer in factorised form.

iii

State the values of x for which the derivative is zero.

a
y = x \left(x - 8\right)^{4}
b
y = x^{3} \left(x + 3\right)^{4}
c
y = \left(x + 2\right) \left(x + 5\right)^{6}
10

Consider the function f \left( x \right) = \left(x + 1\right) \left(x + 3\right)^{3}.

a

Find f' \left( x \right) in factorised form.

b

Find the equation of the tangent at \left( - 1 , 0\right).

c

Find the equation of the normal at \left( - 1 , 0\right).

11

Find the gradient of the tangent to the curve y = x \sqrt{ 2 x + 5} at the point where x = 2.

12

Find the values of x such that the gradient of the tangent to the curve y = 2 x \left(x + 3\right)^{2} is equal to 14.

Sign up to access Worksheet
Get full access to our content with a Mathspace account

Outcomes

U34.AoS3.3

derivatives of f(x) +/- g(x), f(x) x g(x), f(x)/g(x) and (𝑓 ∘ 𝑔)(𝑥) where f and g are polynomial functions, exponential, circular, logarithmic or power functions and transformations or simple combinations of these functions

U34.AoS3.12

the sum, difference, chain, product and quotient rules for differentiation

U34.AoS3.17

apply the product, chain and quotient rules for differentiation to simple combinations of functions by hand

U34.AoS3.16

find derivatives of polynomial functions and power functions, functions of the form f(ax+b) where f is x^n, sine, cosine; tangent, e^x, or log x base e and simple linear combinations of these, using pattern recognition, or by hand

What is Mathspace

About Mathspace