The relationships between the reciprocal functions we learned about in lesson 6.02 Evaluating trigonometric functions make it possible to write trigonometric expressions in equivalent forms. We will use the Pythagorean theorem and trigonometric functions to manipulate identities.
Drag the slider to change the radius of the circle. Drag the triangle anywhere on the applet.
The Pythagorean theorem concerning right triangles can be expressed by means of trigonometric ratios.
The following Pythagorean identities can also be used to find trigonometric function values given certain information:\begin{aligned} \left(\sin \theta \right)^2 + \left(\cos \theta \right) ^2 = 1 \quad \text{ or } \quad \sin^2 \theta + \cos^2 \theta = 1 \\\ \left(\tan \theta \right) ^ 2 + 1 = \left(\sec \theta \right) ^ 2 \quad \text{ or } \quad \tan ^2 \theta + 1 = \sec^2 \theta \\\ 1 + \left( \cot \theta \right) ^ 2 = \left( \csc \theta \right) ^2 \quad \text{ or } \quad 1 + \cot^2 \theta = \csc^2 \theta \end{aligned}
Recall the basic trigonometric identities:
\begin{aligned} \sin \theta = \dfrac{1}{\csc \theta} \qquad \cos \theta = \dfrac{1}{\sec \theta} \qquad \tan \theta = \dfrac{1}{\cot \theta} \qquad \tan \theta = \dfrac{ \sin \theta}{\cos \theta} \\\\ \csc \theta= \dfrac{1}{\sin \theta} \qquad \sec \theta = \dfrac{1}{\cos \theta} \qquad \cot \theta = \dfrac{1}{\tan \theta} \qquad \cot \theta = \dfrac{\cos \theta}{\sin \theta} \end{aligned}
Using some combination of the above identities, we can derive the values of all six of the trigonometric functions if we are given the value of one of them. We can also rewrite trigonometric expressions in equivalent but more concise ways.
Given the following diagram, prove the Pythagorean identity \sin ^2 \theta + \cos ^2 \theta = 1.
Use \sin^2 \theta + \cos^2 \theta = 1 to prove the Pythagorean identity 1 + \cot^2 \theta = \csc^2 \theta.
Simplify the expressions.
\csc \theta \tan \theta \cos \theta
\sec ^2 \theta \left( \cos^2 \theta -1 \right)
Consider \sin \theta = \dfrac{-2}{3}, where 0 < \theta < 2 \pi.
State any quadrant angle \theta lies in.
Find \cos \theta when \pi < \theta < \dfrac{3 \pi}{2}.
Find the value of \tan \theta.
We can write equivalent expressions and find trigonometric function values using a combination of reciprocal identities and the Pythagorean identities given here:\begin{aligned} \sin^2 \theta + \cos^2 \theta = 1 \\\ \tan ^2 \theta + 1 = \sec^2 \theta \\\ 1 + \cot^2 \theta = \csc^2 \theta \end{aligned}