Consider the function: $y=\left(x-4\right)\left(x-2\right)$y=(x−4)(x−2)
State the $y$y-coordinate of the $y$y-intercept.
Find the $x$x-coordinates of the $x$x-intercepts. Write all solutions on the same line separated by a comma.
Give the coordinates for the $y$y-intercept and the $x$x-intercepts. Separate the $x$x-intercepts with a comma.
$y$y-intercept $=$= $\editable{}$
$x$x-intercepts $=$= $\editable{}$
Complete the table of values for the equation.
$x$x | $-1$−1 | $1$1 | $3$3 | $5$5 | $7$7 |
---|---|---|---|---|---|
$y$y | $\editable{}$ | $\editable{}$ | $\editable{}$ | $\editable{}$ | $\editable{}$ |
Find the coordinates of the vertex.
Vertex $=$=$\left(\editable{},\editable{}\right)$(,)
Plot the graph of the parabola.
Consider the function $y=x\left(x+2\right)$y=x(x+2).
Consider the graph.
Consider the parabola $y=\left(1-x\right)\left(x-5\right)$y=(1−x)(x−5).