topic badge

4.05 Function operations

Lesson

Concept summary

Just as we can perform operations on polynomials, we can also perform operations on different functions - adding, subtracting, multiplying or dividing them - provided we follow specific rules.

Operations with functions are defined using special notation:

  • Sum: \left(f+g\right)\left(x\right)=f\left(x\right)+g\left(x\right)
  • Difference: \left(f-g\right)\left(x\right)=f\left(x\right)-g\left(x\right)
  • Product: \left(f\cdot g\right)\left(x\right)=f\left(x\right)\cdot g\left(x\right)
  • Quotient: \left(\dfrac{f}{g}\right)\left(x\right)=\dfrac{f\left(x\right)}{g\left(x\right)} \text{, where } g\left(x\right)\neq 0

With each operation, the domain of the new function becomes the intersection or overlap of the domains of the original functions. The exception is that in the case of a quotient function, the new function's domain is further restricted to exclude values that make the denominator function zero.

Worked examples

Example 1

Consider the following pair of functions:

\begin{aligned} f\left(x\right) & = -5x+5\\\ g\left(x\right) & = 2x^2+3x-10 \end{aligned}

a

Find \left(f+g\right)\left(x\right)

Approach

To find \left(f+g\right)\left(x\right) we want to add the two functions together.

Solution

\displaystyle \left(f+g \right)\left(x\right)\displaystyle =\displaystyle f\left(x\right)+g\left(x\right)
\displaystyle =\displaystyle \left(-5x+5\right)+\left(2x^2+3x-10\right)Substitute f\left(x\right), g\left(x\right)
\displaystyle =\displaystyle 2x^2-2x-5Combine like terms
b

Find \left(f-g\right)\left(x\right)

Approach

To find \left(f-g\right)\left(x\right) we want to subtract g\left(x\right) from f\left(x\right).

Solution

\displaystyle \left(f-g \right)\left(x\right)\displaystyle =\displaystyle f\left(x\right)-g\left(x\right)
\displaystyle =\displaystyle \left(-5x+5\right)-\left(2x^2+3x-10\right)Substitute f\left(x\right), g\left(x\right)
\displaystyle =\displaystyle -2x^2-8x+15Combine like terms
c

Find \left(f \cdot g\right)\left(x\right)

Approach

To find \left(f \cdot g\right)\left(x\right) we want to find the product of the two functions.

Solution

\displaystyle \left(f \cdot g \right)\left(x\right)\displaystyle =\displaystyle f\left(x\right) \cdot g\left(x\right)
\displaystyle =\displaystyle \left(-5x+5\right)\left(2x^2+3x-10\right)Substitute f\left(x\right), g\left(x\right)
\displaystyle =\displaystyle -5x\left(2x^2\right) -5x\left(3x\right) -5x\left(-10\right)+5\left(2x^2\right)+5\left(3x\right)+5\left(-10\right)Distribute the parentheses
\displaystyle =\displaystyle -10x^3 -15x^2 + 50x + 10x^2 + 15x - 50Simplify the products
\displaystyle =\displaystyle -10x^3-5x^2+65x-50Combine like terms

Example 2

The table shows some of the outputs of the functions f\left(x\right) and g\left(x\right).

Use the table to evaluate the following:

xf\left(x\right)g\left(x\right)
0-28
157
2124
319-1
426-8
533-17
a

\left(f + g\right)\left(4\right)

Approach

We can read the values of f\left(4\right) and g\left(4\right), and then add them together.

Solution

\displaystyle \left(f + g\right)\left(4\right)\displaystyle =\displaystyle f\left(4\right)+g\left(4\right)
\displaystyle =\displaystyle 26+\left(-8\right)
\displaystyle =\displaystyle 18
b

\left(f\cdot g\right)\left(3\right)

Approach

We can read the values of f\left(3\right) and g\left(3\right), and then multiply them together.

Solution

\displaystyle \left(f \cdot g\right)\left(3\right)\displaystyle =\displaystyle f\left(3\right)\cdot g\left(3\right)
\displaystyle =\displaystyle 19\left(-1\right)
\displaystyle =\displaystyle -19
c

\left(\dfrac{ f}{g}\right)\left(2\right)

Approach

We can read the values of f\left(2\right) and g\left(2\right), and then find their quotient.

Solution

\displaystyle \left(\dfrac{f}{g}\right)\left(2\right)\displaystyle =\displaystyle \dfrac{f\left(2\right)}{g\left(2\right)}
\displaystyle =\displaystyle \dfrac {12}{4}
\displaystyle =\displaystyle 3

Outcomes

M2.F.BF.A.1

Build a function that describes a relationship between two quantities.*

M2.F.BF.A.1.A

Combine standard function types using arithmetic operations.

M2.MP1

Make sense of problems and persevere in solving them.

M2.MP3

Construct viable arguments and critique the reasoning of others.

M2.MP6

Attend to precision.

M2.MP8

Look for and express regularity in repeated reasoning.

What is Mathspace

About Mathspace