topic badge

1.05 Cube roots of perfect cubes

Worksheet
Cube roots of perfect cubes
1

Evaluate:

a
4^{3}
b
6^{3}
c
5^{3}
d
8^{3}
e
7^{3}
f
10^{3}
g
12^{3}
h
15^{3}
2

Determine whether the following statements true or false:

a

\sqrt{64} = 8

b

\sqrt[3]{64} = 4

c

\sqrt{16} = 4

d

\sqrt[3]{16} = 2

e

\sqrt{512} = 16

f

\sqrt[3]{512} = 8

g

\sqrt{729} = 27

h

\sqrt[3]{729} = 94

3

Evaluate:

a
\sqrt[3]{27}
b
\sqrt[3]{64}
c
\sqrt[3]{1000}
d
\sqrt[3]{343}
e
\sqrt[3]{1331}
f
\sqrt[3]{1728}
g
\sqrt[3]{2744}
h
\sqrt[3]{4096}
4

Evaluate:

a

\sqrt[3]{ - 1 }

b

\sqrt[3]{ - 64 }

c

\dfrac{1}{\sqrt[3]{8}}

d

\sqrt[3]{ 27 \cdot 8}

e

\sqrt[3]{ 243 \cdot 3}

f

\dfrac{1}{2} \sqrt[3]{ 16 \cdot 4}

g

\sqrt[3]{ - 125 } \cdot \sqrt[3]{27}

h

\sqrt[3]{ - 125 } \cdot \sqrt[3]{ - 64 }

5

Evaluate:

a
\sqrt[3]{512} \times \sqrt[3]{64}
b
\sqrt[3]{64} \div \sqrt[3]{8}
c
\sqrt[3]{8} \times \sqrt[3]{1000}
d
\sqrt[3]{64} \div \sqrt{16}
e
6^2 \div \sqrt[3]{8}
f
\sqrt[3]{1000} \div \sqrt{100}
g
8^3 \div \sqrt[3]{64}
h
\sqrt[3]{5832} \div \sqrt[3]{216} \div \sqrt[3]{27}
6

Solve:

a
x^{3}=1
b
x^{3}=8
c
x^{3}=125
d
x^{3} = 64
e
x^{3}=-1
f
x^{3}=-27
g
x^{3}=-64
h
x^{3}=-1000
7

Juan knows that x^3=-64 has a solution of -4 but that x^2=-64 has no solution. Explain why this is the case.

Applications
8

Find the side length of a cube with a volume of 8\text{ ft}^3.

9

A toy block in the shape of a cube has a volume of 8\text{ in}^{3}. What is the length of one side of the block?

10

Letisha is digging a hole for a pond in her yard. The hole is currently in the shape of a cube and has a volume of 27\text{ ft}^{3}.

a

What is the length of one side of the hole?

b

How much wider do the sides need to be for the hole to be in the shape of a cube with a volume of 125\text{ ft}^{3}?

Sign up to access Worksheet
Get full access to our content with a Mathspace account

Outcomes

MA.8.AR.2.3

Given an equation in the form of x²=p and x³=q, where p is a whole number and q is an integer, determine the real solutions.

MA.8.NSO.1.7

Solve multi-step mathematical and real-world problems involving the order of operations with rational numbers including exponents and radicals.

What is Mathspace

About Mathspace