Data may be represented in a matrix to make it easier to manipulate the data and solve problems in a given context. We can then manipulate the data sets by adding, subtracting, or multiplying the matrices as necessary to solve the problem.
The solution of the problem may require the entire resulting matrix or just the elements of the resulting matrix. The final answer should be written in the context of the problem.
If A=\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} and B= \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} , to add A+B add each corresponding element a_{ij}+b_{ij}.
This process is shown below:
\begin{aligned} A+B &=\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}+\begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \\ &= \begin{bmatrix} a_{11}+b_{11} & a_{12}+b_{12} \\ b_{21}+b_{21} & a_{22}+b_{22} \end{bmatrix} \end{aligned}If A=\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} and B= \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} , to subtract A-B subtract each corresponding element a_{ij}-b_{ij}.
This process is shown below:
\begin{aligned} A-B &= \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}-\begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \\ &= \begin{bmatrix} a_{11}-b_{11} & a_{12}-b_{12} \\ b_{21}-b_{21} & a_{22}-b_{22} \end{bmatrix} \end{aligned}To find the product of a row and column, we multiply the corresponding row entries and column entries together and take their sum. For example:\begin{bmatrix} a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} b_{11} \\ b_{21} \end{bmatrix}=\begin{bmatrix} a_{11}b_{11}+a_{12}b_{21}\end{bmatrix}It is for this reason that the number of columns of the left matrix must be the same as the number of rows of the right matrix, otherwise we cannot multiply the rows and columns together.
If the order of the first matrix being multiplied is a\times b and the order of the second matrix being multiplied is b\times c, then the multiplication results in an a\times c matrix.
For example:
For the matrix A=\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, and the scalar k: \quad kA=\begin{bmatrix} k \cdot a_{11} & k \cdot a_{12} \\ k \cdot a_{21} & k \cdot a_{22} \end{bmatrix}.
Two special types of matrices are a zero matrix and identity matrix. The roles that zero matrices and identity matrices play in matrix addition and multiplication are similar to the roles of 0 and 1 in the real number system.
The following are some key properties of these matrices under matrix addition and multiplication:
The tables below show the number of small, medium, and large pizzas sold at David's two stores on Monday and Tuesday:
Monday:
Small | Medium | Large | |
---|---|---|---|
Store 1 | 28 | 36 | 32 |
Store 2 | 25 | 27 | 24 |
Tuesday:
Small | Medium | Large | |
---|---|---|---|
Store 1 | 25 | 33 | 28 |
Store 2 | 26 | 20 | 23 |
Find the total number of sales of small, medium, and large pizzas for each store over Monday and Tuesday. Express your answer as a 2 \times 3 matrix.
Identify the number of large pizzas that were sold at Store 2 over Monday and Tuesday.
Consider the following matrices:
A = \begin{bmatrix} 7 & 0 & -2 \\ -4 & 9 & -5 \end{bmatrix},\, B=\begin{bmatrix} 8 & -4 & 2 \\ -7 & 4 & 5 \end{bmatrix},\, C=\begin{bmatrix} 9 & 5 \\ -3 & 2 \\ 6 & -1 \end{bmatrix}\text{ and } D = \begin{bmatrix} 4 & -1 & 3 \\ 2 & 0 & 1 \\ 1 & 2 & -3\end{bmatrix}
Find 3A.
Find AB.
Find AC.
Use technology to find DC.
Consider the following matrices:
I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},\, O=\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \text{ and }A=\begin{bmatrix} 2 & -4 \\ 7 & 3 \end{bmatrix}
Show that A-A=O.
Show that IA=A.