topic badge
CanadaON
Grade 9

3.08 Exponent laws

Worksheet
Exponent laws
1

Write the following expressions in simplest exponent form:

a
2^{12} \times 2^{9}
b
2^{8} \times 11^{8}
c
11^{12} \div 11^{8}
d
21^{5} \div 3^{5}
e
\left(5^{12}\right)^{4}
f
15^{17} \div 15^{8} \div 15^{5}
g
\left(23^{8}\right)^{9} \times 23^{7}
h
\dfrac{\left(17^{5}\right)^{8}}{17^{32}}
i
\dfrac{19^{9} \times 19^{4}}{19^{8}}
j
\dfrac{12^{6}}{12^{4}} \times 12^{5}
k
\dfrac{\left(13^{5}\right)^{2} \times 13^{3}}{13^{5}}
l
\dfrac{\left(15^{9}\right)^{5} \times 15^{7}}{15^{25}}
2

Complete the following statements:

a
11^{11} \times 11^{⬚} = 11^{19}
b
5^{11} \times \left(⬚\right)^{11} = 35^{11}
c
97^{⬚} \div 97^{22} = 97^{12}
d
55^{6} \div \left(⬚\right)^{6} = 11^{6}
e
\left(11^{4}\right)^{⬚} = 11^{12}
f
7^{8} \times 7^{⬚} = 7^{14}
g
2^{10} \times \left(⬚\right)^{10} = 10^{10}
h
19^{⬚} \div 19^{18} = 19^{20}
i
60^{4} \div \left(⬚\right)^{4} = 12^{4}
j
\left(13^{8}\right)^{⬚} = 13^{16}
3

Evaluate the following expressions:

a
6^{5} \times 6^{3}
b
7^{3} \times 3^{3}
c
4^{8} \div 4^{3}
d
\left(5^{4}\right)^{2}
e
35^{5} \div 5^{5}
f
2^{4} \times 4^{4}
g
11^{18} \div 11^{9} \div 11^{7}
h
\left(3^{3}\right)^{2}
i
\dfrac{6^{5} \times 6^{9}}{6^{12}}
j
7^{27} \div 7^{30} \div 7^{3}
k
\dfrac{12^{10} \times 12^{4}}{12^{11}}
l
\dfrac{\left(6^{8}\right)^{6}}{6^{46}}
Negative bases
4

Write the following expressions in simplest exponent form:

a
\left( - 11 \right)^{10} \times \left( - 11 \right)^{3}
b
\left( - 7 \right)^{8} \times 3^{8}
c
\left(-5 \right)^{2} \times 3^{2}
d
\left( - 3 \right)^{12} \div \left( - 3 \right)^{5}
e
\left( - 12 \right)^{20} \div \left( - 12 \right)^{19}
f
\left( - 30 \right)^{50} \div \left( - 30 \right)^{47}
g
\left( - 48 \right)^{3} \div \left(-6 \right)^{3}
h
\left( - 33 \right)^{11} \div \left( - 3 \right)^{11}
i
\left( - 35 \right)^{5} \div 5^{5}
j
\left( - 42 \right)^{2} \div 7^{2}
5

Complete the following statements:

a
11^{3} \times \left(⬚\right)^{3} = \left( - 77 \right)^{3}
b
\left( - 5 \right)^{11} \times \left(⬚\right)^{11} = 15^{11}
c
\left( - 5 \right)^{⬚} \div \left( - 5 \right)^{31} = \left( - 5 \right)^{19}
d
\left( - 14 \right)^{13} \div \left(⬚\right)^{13} = \left( - 7 \right)^{13}
e
\left( - 3 \right)^{⬚} \div \left( - 3 \right)^{39} = \left( - 3 \right)^{10}
f
\left( - 5 \right)^{4} \times \left(⬚\right)^{4} = \left( - 60 \right)^{4}
g
\left( - 3 \right)^{7} \times \left(⬚\right)^{7} = \left( 6 \right)^{7}
h
\left( {⬚} \right)^3 \div \left( - 3 \right)^{3} = \left( 7 \right)^{3}
i
\left(-33\right)^{3} \div \left( ⬚ \right)^{3} = -11^{3}
j
\left(⬚\right)^{7} \div \left( - 5 \right)^{7} = 11^{7}
6

Evaluate the following expressions:

a
\left( - 4 \right)^{11} \div \left( - 4 \right)^{7}
b
\left( - 2 \right)^{3} \times \left( - 2 \right)^{3}
c
\left( - 3 \right)^{3} \times \left( - 3 \right)^{2}
d
4^{3} \times \left( - 5 \right)^{3}
e
\left( - 3 \right)^{8} \div \left( - 3 \right)^{5}
f
15^{5} \div \left( - 3 \right)^{5}
g
2^3\times \left(-3\right)^3
h
\left(-14\right)^{11}\div 2^{11}
i
\left (-7\right)^{2} \times 5^{2}
j
\left(-9\right)^{4} \times \left(-3\right)^{4}
k
\left(-100\right)^{6} \div 50^{6}
l
60^{3} \div \left(-3\right)^{3}
Fractional bases
7

Write the following in simplest exponent form:

a
\left(\dfrac{1}{3}\right)^{4}
b
\left(\dfrac{3}{8}\right)^{3}
c
\left(\dfrac{4}{16}\right)^{8}
d
\left(\dfrac{15}{6}\right)^{2}
e
\left(\dfrac{10}{33}\right)^{5}
f
\left(\dfrac{2}{35}\right)^{6}
g
\left(\dfrac{5}{18}\right)^{3}
h
\left(\dfrac{29}{41}\right)^{7}
i
\left(\dfrac{11}{13}\right)^{9}
j
\left(\dfrac{20}{3}\right)^{2}
k
\left(\dfrac{17}{4}\right)^4
l
\left(\dfrac{31}{50}\right)^5
8

Complete the following statements:

a
\dfrac{1}{27} = \left(\dfrac{1}{3}\right)^{⬚}
b
\dfrac{64}{27} = \left(\dfrac{4}{3}\right)^{⬚}
c
\dfrac{27}{8} = \left(\dfrac{3}{⬚}\right)^{3}
d
\dfrac{⬚}{16} = \left(\dfrac{1}{4}\right)^{2}
e
\dfrac{27}{8} = \left(\dfrac{3}{2}\right)^{⬚}
f
\dfrac{⬚}{625}=\left(\dfrac{2}{5}\right)^{4}
g
\dfrac{81}{100} = \left(\dfrac{⬚}{10}\right)^{2}
h
\dfrac{256}{⬚} = \left(\dfrac{4}{5}\right)^{4}
i
\dfrac{25}{9} = \left(\dfrac{5}{3}\right)^{⬚}
j
\dfrac{⬚}{144} = \left(\dfrac{11}{12}\right)^{2}
k
\dfrac{125}{27} = \left(\dfrac{⬚}{3}\right)^3
l
\dfrac{32}{729} = \left(\dfrac{2}{3}\right)^{⬚}
9

Evaluate the following expressions in fully simplified fraction:

a
\left(\dfrac{1}{3}\right)^{2}
b
\left(\dfrac{3}{5}\right)^{3}
c
\left(\dfrac{1}{2}\right)^{5}
d
\left(\dfrac{7}{11}\right)^{2}
e
\left(\dfrac{3}{8}\right)^{3}
f
\left(\dfrac{12}{13}\right)^2
g
\left(\dfrac{5}{9}\right)^{3}
h
\left(\dfrac{2}{3}\right)^{4}
i
\left (\dfrac{4}{5}\right)^{6}
j
\left(\dfrac{2}{5}\right)^{3}
k
\left(\dfrac{5}{7}\right)^{2}
l
\left(\dfrac{10}{14}\right)^3
10

State whether the following fractions are equal to \left(\dfrac{1}{2}\right)^{3} :

a
\dfrac{3}{6}
b
\dfrac{1}{2^{3}}
c
\dfrac{3}{2^{3}}
d
\dfrac{1}{8}
Sign up to access Worksheet
Get full access to our content with a Mathspace account

Outcomes

9.B2.2

Analyse, through the use of patterning, the relationships between the exponents of powers and the operations with powers, and use these relationships to simplify numeric and algebraic expressions.

What is Mathspace

About Mathspace