topic badge
iGCSE (2021 Edition)

25.02 Addition, subtraction and scalar multiplication

Worksheet
Geometric addition and subtraction of vectors (Extended)
1

Consider the following graph and identify which vector is the result of \mathbf{a} + \mathbf{b}:

x
y
2

Consider the graph of vectors \mathbf{a} and \mathbf{b}. Plot the result of \mathbf{a} + \mathbf{b}.

x
y
3

Consider the following graphs of \mathbf{a} and \mathbf{b}:

a

Plot the result of \mathbf{a} + \mathbf{b} in the first graph:

x
y
b

Plot the result of \mathbf{b} + \mathbf{a} in the second graph:

x
y
c

Are the two resulting vectors \mathbf{a} + \mathbf{b} and \mathbf{b} + \mathbf{a} equal?

4

The vectors \mathbf{a}, \mathbf{b} and \mathbf{c} have been graphed as shown:

Plot the result of \mathbf{a} + \mathbf{b}+ \mathbf{c} on the same axes.

x
y
5

Vectors \mathbf{a}, \mathbf{b}, \mathbf{c} and \mathbf{d} have been graphed as shown:

Plot the result of \mathbf{b}+ \mathbf{c} on the same axes.

x
y
Algebraic addition and subtraction of vectors
6

Rewrite \left(6, 5\right) + \left(7, - 4 \right) as a single vector.

7

For each of the following set of vectors, find:

i
\mathbf{A}+\mathbf{B}
ii
\mathbf{B}+\mathbf{C}
iii
\mathbf{A}+\mathbf{B}+\mathbf{C}
a
\mathbf{A}=\left(\begin{matrix}4\\\\9\end{matrix}\right), \mathbf{B}=\left(\begin{matrix}8\\\\2\end{matrix}\right), \mathbf{C}= \left(\begin{matrix}7\\\\5\end{matrix}\right)
b
\mathbf{A}=\left(\begin{matrix}-6\\\\7\end{matrix}\right), \mathbf{B}=\left(\begin{matrix}-4\\\\-8\end{matrix}\right), \mathbf{C}= \left(\begin{matrix}2\\\\1\end{matrix}\right).
c
\mathbf{A}=\left(\begin{matrix}4.7\\\\-6.2\end{matrix}\right), \mathbf{B}=\left(\begin{matrix}7.4\\\\2.3\end{matrix}\right), \mathbf{C}= \left(\begin{matrix}-5.1\\\\-3.5\end{matrix}\right).
d
\mathbf{A}=\left(\begin{matrix}\dfrac{5}{6}\\\\\dfrac{6}{5}\end{matrix}\right), \mathbf{B}=\left(\begin{matrix}-\dfrac{2}{5}\\\\-\dfrac{7}{5}\end{matrix}\right), \mathbf{C}= \left(\begin{matrix}\dfrac{3}{2}\\\\-\dfrac{4}{5}\end{matrix}\right).
Scalar multiplication of vectors
8

Let \mathbf{a}=\left(\begin{matrix}3\\1\end{matrix}\right), find:

a
2\mathbf{a}
b
5\mathbf{a}
c
-1\mathbf{a}
d
-6\mathbf{a}
9

Let \mathbf{a}=\left(\begin{matrix}10\\16\end{matrix}\right), find:

a
3\mathbf{a}
b
-10\mathbf{a}
c
\dfrac{1}{2}\mathbf{a}
d
-\dfrac{1}{4}\mathbf{a}
10

Let \mathbf{a}=\left(\begin{matrix}-4\\9\end{matrix}\right), find:

a
3\mathbf{a}
b
-2\mathbf{a}
c
\dfrac{1}{2}\mathbf{a}
d
-100\mathbf{a}
Scalar multiplication of vectors (Extended)
11

Let \mathbf{a}=\left(\begin{matrix}2\\4\end{matrix}\right). Using the origin as the starting point, plot the following vectors:

a

3 \mathbf{a}

b

- 2 \mathbf{a}

c

\dfrac{1}{2} \mathbf{a}

12

Consider vectors \mathbf{a} and \mathbf{b} plotted on the graph below. Find the column vector for each of the following:

a

\mathbf{a} + \mathbf{b}

b

3 \mathbf{b}

c

4 \mathbf{a}

d

5 \mathbf{b} - \mathbf{a}

e

3 \mathbf{a} - 4 \mathbf{b}

1
2
3
4
5
6
7
8
9
10
x
1
2
3
4
5
6
7
8
9
10
y
13

Consider the vectors shown below:

-12
-8
-4
4
8
12
x
-12
-8
-4
4
8
12
y
-12
-8
-4
4
8
12
x
-12
-8
-4
4
8
12
y
-12
-8
-4
4
8
12
x
-12
-8
-4
4
8
12
y
-12
-8
-4
4
8
12
x
-12
-8
-4
4
8
12
y
a

Which vector is equivalent to 2 \mathbf{a}?

b

Which vector is equivalent to \dfrac{1}{4} \mathbf{b}?

c

Which vector is equivalent to - \mathbf{a}?

d

Which vector is equivalent to - \dfrac{1}{2} \mathbf{d}?

14

Consider the vectors plotted on the graph. Find the column vector for each of the following:

a

3 \mathbf{a}

b

4 \mathbf{c}

c

2 \mathbf{b} + \mathbf{d}

d

\mathbf{c} - \mathbf{d}

e

3 \mathbf{a} - \mathbf{b}

f

- 4 \mathbf{b} + 2 \mathbf{c}

1
2
3
4
5
6
7
8
9
x
1
2
3
4
5
6
7
8
9
y
15

If \mathbf{a} = \left( 2 x, 8 x\right), \mathbf{b} = \left( 3 x, 4 x\right), and \left|\mathbf{a} + \mathbf{b}\right| = 13, find the value of x.

16

If \mathbf{a} = \left( 2 x, 4\right), \mathbf{b} = \left( 3 x, 8 x\right), and \left|\mathbf{a} + \mathbf{b}\right| = 13 x, find the value of x.

Sign up to access Worksheet
Get full access to our content with a Mathspace account

Outcomes

0580C7.1B

Add and subtract vectors. Multiply a vector by a scalar.

0580E7.1B

Add and subtract vectors. Multiply a vector by a scalar.

0580E7.3

Calculate the magnitude of a vector (x y) as x^2 + y^2 . Represent vectors by directed line segments. Use the sum and difference of two vectors to express given vectors in terms of two coplanar vectors. Use position vectors.

What is Mathspace

About Mathspace