topic badge
iGCSE (2021 Edition)

8.04 Variables and indices

Worksheet
Multiplication law
1

Simplify:

a
y^{3} \times y^{2}
b
x^{6} \times 8 x^{3}
c
3 y^{6} \times 4 y
d
x^{y} x^{z}
e
a^{7} \times -6 a^{5}
f
-2 a^{4} \times 5 a
g
-b^{7} \times -b^{6}
h
a^{b} a^{c}
i
5y^{5} \times 6y^{3}
j
-8 u^{3} \times -3u
k
-4b^{6} \times -5b^{7}
l
x^{a}x^{b} x^{c}
2

Complete the following statements:

a
b^{4} \times b^{⬚} = b^{7}
b
7 x^{15} \times ⬚ = 35 x^{27}
c
c^{10} \times c^{⬚} = c^{8}
d
4 x^{20} \times ⬚ = 24 x^{25}
Division law
3

Simplify:

a
a^9\div a^5
b
\dfrac{x^{11}}{5 x^{8}}
c
\dfrac{6 m^{15}}{m^{4}}
d
b^6\div b^2
e
\dfrac{j^{9}}{j^{2}}
f
x^{7} \div x^{4}
g
\dfrac{f^{8}}{f^{5}}
h
s^{13}\div s^4
i
\dfrac{4 k^{11}}{2k^{6}}
j
\dfrac{8g^{12}}{g^{5}}
k
6p^{13} \div 2p^{10}
l
15l^8\div 3l^2
4

Complete the following statements:

a
b^{9} \div b^{⬚} = b^{5}
b
x^{⬚}\div x^3=x^2
c
\dfrac{g^⬚}{g^4}=g^7
d
\dfrac{k^7}{k^⬚}=k^3
Power of a power law
5

Consider the expression \left(p^{3}\right)^{2}.

a

State whether the following expressions are equivalent to \left(p^{3}\right)^{2}:

i
\left( p \times p \times p\right) \times \left( p \times p \times p\right)
ii
p^{3} \times p^{3}
iii
\left( p \times p \times p\right)^{2}
iv
p^{3} \times p^{2}
v
\left( p \times p \times p\right) \times \left( p \times p\right)
b

State whether the following equations are true or false:

i
\left(p^{3}\right)^{2} = p^{3 + 2}
ii
\left(p^{3}\right)^{2} = p^{3 \times 2}
c

Complete the following:

\left(p^{3}\right)^{2} = p^{⬚}
6

Simplify:

a
\left(j^{3}\right)^{6}
b
\left(w^{2}\right)^{4}
c
\left(t^4\right)^3
d
\left(3a^4\right)^3
e
\left(5h^7\right)^3
f
\left(xy^2\right)^5
g
\left(\dfrac{2}{h^2}\right)^4
h
\left(\dfrac{a^2}{b^5}\right)^3
i
\left(\dfrac{3x^2}{y^5}\right)^3
j
\left( - x^{9} \right)^{4}
k
\left(-5x^4\right)^3
l
\left(\dfrac{-2a^4}{3b^2}\right)^3
7

Find the value of a and b in the following equation:

\dfrac{v^{18}}{w^{24}} = \left(\dfrac{v^a}{w^{4}}\right)^b

Zero index
8

Simplify:

a
18 a^{0}
b
\left(f^{0}\right)^{9}
c
\left(g^{12}\right)^{0}
d
\left( 6 a\right)^{0}
e
8r^0+\left(2q^3\right)^0
f
\left(\dfrac{2}{x^2}\right)^0
g
\dfrac{3r^0}{t^2}
h
8k^0\div\left(4x^2\right)^0
9

Complete the following statements:

a
b^{11} \div b^{11} = b^{⬚}
b
\dfrac{h^{⬚}}{h^{8}} = h^{0}
c
\dfrac{v^{9}}{v^{⬚}} = v^{0}
d
y^⬚\times y^5=y^5
Mixed laws
10

Simplify:

a
\left( x^{6} y^{3}\right)^{4}
b
\dfrac{y^{7} \times y^{6}}{y^{3} \times y^{2}}
c
p^{5} \times \left(p^{4}\right)^{3}
d
\left( 2 y^{2}\right)^{3}
e
m^{5} \div m^{2} \times m^{5}
f
p^{9} \div p^{5} \div p^{2}
g
\left( - 2 x^{3} \right)^{4}
h
\dfrac{6 p^{5} \times 4 p^{7}}{8 p^{3}}
i
\left( 7 x^{2}\right)^{0} - \left( 8 x^{6}\right)^{0}
j
\left( 12 x^{4}\right)^{0} + 12^{0} - 12 h^{0}
k
\left( 4 h^{0}\right)^{2} + 18 \div \left( 3 g^{0}\right)
l
\left(\left(x^{2}\right)^{6}\right)^{5}
m
\left( 4 u^{5} v^{2}\right)^{2}
n
\left( 3 a^{2} b^{5} c\right)^{4}
o
\left( 3 y^{5}\right)^{2} \times \left( 5 y^{2}\right)^{3}
p
\dfrac{\left(x^{4}\right)^{2}}{x^{5}}
q
\dfrac{\left( 2 x^{2} y^{0}\right)^{4}}{x^{5}}
r
\left(c^{10}\right)^{11} \div \left(c^{8}\right)^{3}
s
\dfrac{24 a^{3}}{\left( 2 a\right) \left( 4 b\right)}
t
\left( 10 x^{2} \times 10x^{5}\right)^{0} - 10 x^{0}
u
\dfrac{3^{ 4 a + 2} \times 3^{1 + 6 a}}{\left(3^{3}\right)^{ 3 a - 1}}
v
\dfrac{81^{ 7 a - 4} \times 9^{ 3 a + 2}}{27^{3 - 3 a}}
11

Write \left(16^{p}\right)^{4} in the form a^b, where a is a prime number.

Sign up to access Worksheet
Get full access to our content with a Mathspace account

Outcomes

0580C1.7A

Understand the meaning of indices (fractional, negative and zero) and use the rules of indices.

0580E1.7A

Understand the meaning of indices (fractional, negative and zero) and use the rules of indices.

0580C2.4

Use and interpret positive, negative and zero indices. Use the rules of indices.

0580E2.4A

Use and interpret positive, negative and zero indices. Use the rules of indices.

What is Mathspace

About Mathspace