Consider the function $y=$y=$f\left(x\right)=-0.6x^2+11$f(x)=−0.6x2+11
Determine $f'\left(x\right)$f′(x)
Use the formula $\delta y$δy$\approx$≈$f'\left(x\right)\times\delta x$f′(x)×δx to calculate the approximate change in $y$y when $x$x changes from $2$2 to $2.01$2.01
Consider the function $y=$y=$f\left(x\right)=\frac{4}{x^2}+\sqrt{x}$f(x)=4x2+√x
Consider the volume $V\left(h\right)$V(h) of a cone that has a radius measuring $7$7 cm and a variable height $h$h cm.