topic badge
iGCSE (2021 Edition)

11.19 Differentiating composite functions

Worksheet
Composite functions
1

Differentiate the following:

a
y=e^x\sin x
b
y = e^{\sin x}
c
y = e^{x} \cos 3x
d
y = e^{ 3 x} \cos \left(\dfrac{x}{3}\right)
e
y = e^{ 2 x} \tan 5 x
f
y = e^{ - x } \sin 4 x
g
y = \cos \left(\ln x\right)
h
y = \cos \left(\ln \left( - 5 x \right)\right)
i
y = \cos x \ln x
j
y = \tan x \ln \left( 4 x\right)
k
y = e^{x} \ln x
l
y = e^{ 2 x} \ln \left( 4 x\right)
m
y = \log_{e} \left(\ln x\right)
n
y = \dfrac{\ln x}{e^{ 2 x}}
o
y = e^{ - 2 } \ln \left( - 6 + x^{ - 3 }\right)
p
y = \cos \left(\dfrac{\pi t}{2} - \dfrac{\pi}{3}\right)
q
y = x^{2} \sin \left(\dfrac{1}{x}\right)
r
y = 4 \sin \left(\dfrac{x}{5}\right) - 6 e^{ 2 x} + x^{ - 8 }
s
y = \ln \left(x^{2} - 7 x - 12\right) - \sqrt{ 11 x}
t
y = \left(e^{ - 5 x^{2} } + \cos x\right)^{5}
u
y = \dfrac{e^{ - 0.2 x}}{\sin \left( \dfrac{\pi}{4} x\right) - x^{4}}
v
y = \left(\cos x + \sin x\right) e^{ 6 x}
w
y = \dfrac{\cos \left( 4 x - \dfrac{10 \pi}{11}\right)}{\left(x + 3\right)^{2}}
2

Find the derivative of the following:.

a
e^{ 5 x}\cos \left(x\right)
b
x^{3} \sin x
c
\cos ^{2}\left(x\right)
d
\dfrac{\cos x - \sin x}{\cos x + \sin x}
e
\dfrac{4 x}{\sin x}
f
e^{ 3 x} \cos \left( 5 x + \dfrac{4 \pi}{7}\right)
g
\dfrac{\ln x}{\sin x}
h
\ln \left(\sin x\right)
3

For each of the following curves and given points:

i

Find an expression for \dfrac{dy}{dx}.

ii

Find the exact value of the gradient of the curve at the given point.

a

y = \cos 3 x at x = \dfrac{\pi}{18}.

b
y = 6- \cos 3 x at x = \dfrac{\pi}{9}.
c

y = \sin 4 x at x = \dfrac{\pi}{16}.

d

y = \sin ^{2}\left( 4 x\right) at x = \dfrac{\pi}{32}.

e

y = \cos ^{2}\left( 2 x\right) at x = \dfrac{\pi}{24}.

4

Consider the equation y = e^{\tan \left( - 6 x\right)}.

a

Let f \left( x \right) = \tan \left( - 6 x\right). Find f' \left( x \right).

b

Hence, differentiate y = e^{\tan \left( - 6 x\right)}.

5

Consider the expression e^{\cos x} \sin \left(e^{x}\right).

a

If u = e^{\cos x}, find \dfrac{d u}{d x}.

b

If v = \sin \left(e^{x}\right), find \dfrac{d v}{d x}.

c

Hence, find the derivative of y = e^{\cos x} \sin \left(e^{x}\right).

6

Consider the function y = \dfrac{4 x^{2} + e^{x}}{\cos 7 x}.

a

If u = 4 x^{2} + e^{x}, find u'.

b

If v = \cos 7x, find v'.

c

Hence, find y'.

7

Consider the function y = x e^{x}.

a

Show that e^{x + \ln x} = x e^{x}.

b

Hence, find \dfrac{d y}{d x}, without using the product rule.

8

Determine \dfrac{d y}{d x}, given that y = u^{5} and u = \ln \left(x + 5\right).

9

Find the derivative of the following:

a

y = \dfrac{x}{3} e^{ - 3 x}

b

y = \left( 4 x + 6\right) \tan 4 x

c

g \left( x \right) = \dfrac{x}{3} e^{ - 3 x} - \left( 4 x + 6\right) \tan 4 x

10

Consider g \left( x \right) = \sqrt { \left( e^{ 3 x} + x^{ - 4 } - \tan \dfrac{\pi}{4} x \right) } .

a

Find the derivative of y = e^{ 3 x} + x^{ - 4 } - \tan \dfrac{\pi}{4} x

b

Hence, differentiate g \left( x \right) = \sqrt{y}, expressing your answer in exact form.

11

Consider the expression e^{x} \left(1 + \ln 0.3 x\right)^{ - 2 }.

a

If y = \left(1 + \ln \left( 0.3 x\right)\right)^{ - 2 }, find \dfrac{d y}{d x}.

b

Hence, find the derivative of y = e^{x} \left(1 + \ln 0.3 x\right)^{ - 2 }.

12

Consider the equation y = \left( 2 \ln \left( - 3 x - x^{2}\right) - \cos \left( \dfrac{\pi}{3} x\right) + \dfrac{1}{x^{4}}\right)^{3}.

a

Find the derivative of 2 \ln \left( - 3 x - x^{2}\right).

b

Hence differentiate y = \left( 2 \ln \left( - 3 x - x^{2}\right) - \cos \left( \dfrac{\pi}{3} x\right) + \dfrac{1}{x^{4}}\right)^{3}.

13

Consider the function y = \dfrac{\sin ^{2}\left(x\right)}{\cos x}.

a

Prove that \dfrac{\sin ^{2}\left(x\right)}{\cos x} = \sec x - \cos x.

b

Differentiate f \left( x \right) = \sec x.

c

Hence find \dfrac{dy}{dx}, without using the product or quotient rule.

Stationary points
14

The graph of the function f \left( x \right) = e^{ 2 x} \sin 3 x is shown:

a

Find f' \left( x \right).

b

Find the x-intercepts, B and C.

c

Determine the coordinates of point A, correct to two decimal places.

0.2
0.4
0.6
0.8
1
x
1
2
3
4
5
f(x)
15

Consider the function f \left( x \right) = x^{3} \ln x, over the domain e^{ - \frac{1}{2} } \leq x \leq e^{ - \frac{1}{4} }.

a

Find an expression for f' \left( x \right).

b

Find the exact values of x such that f' \left( x \right)=0.

c

Complete the table of values:

xe^{ - \frac{1}{2} }e^{ - \frac{1}{3} }e^{ - \frac{1}{4} }
f (x)
d

Hence, state the nature and location of any stationary points.

e

Calculate the exact global minimum over the domain.

f

Calculate the exact global maximum over the domain.

16

Consider the function y = \dfrac{\ln 3 x}{e^{ 3 x}}.

a

Find the x-intercept of the function.

b

Find an expression for \dfrac{d y}{d x}.

c

Show that the turning point of the graph occurs when 3 x \ln 3 x - 1 = 0.

d

An approximation to the solution of the equation 3 x \ln 3 x - 1 = 0 is x = 0.58.

Complete the table of values, correct to two decimal places.

x0.010.581.58
\dfrac{dy}{dx} 0
e

Hence, state the nature of the turning point at x = 0.58.

f

State the coordinates of the turning point, correct to two decimal places.

17

Determine the values of the non-zero constants, a and b, for the following function, given it has a turning point at \left(0.25, 1\right):

f \left( x \right) = a x e^{ b x}
18

Consider the function f \left( x \right) = \ln \left(\sin 2 x\right).

a

State the values of x between 0 and 2 \pi for which the function is defined.

b

Determine the values of x in the domain 0 \leq x \leq 2 \pi, for which the function has a maximum value.

c

State the maximum value of the function.

Applications
19

The curve y = x \cos x passes through the point Q, \left(\dfrac{\pi}{2}, 0\right).

Find the equation of the tangent at point Q.

20

Find the equation of the tangent to the following curves:

a

y = e^{x} - 3 \sin x at x = \dfrac{3 \pi}{2}.

b

y = e^{\cos x} at x = \dfrac{3 \pi}{2}.

21

Researchers have created a model to project the country’s population for the next 10 years, where P is the population (in thousands), t years from now. The model is defined by the function: P \left( t \right) = \dfrac{57\,460 e^{\frac{t}{7}}}{t + 13}

a

State the current population of the country.

b

According to the model, state the current rate of growth of the population, to the nearest thousand.

c

Find the rate of population growth 7 months from now, to the nearest thousand.

d

Find the rate of population growth 10 years from now, to the nearest thousand.

22

The displacement of a particle moving in rectilinear motion is given by: x \left( t \right) = \left(t - 2\right)^{2} + \sin \left(t - 4 \pi\right) + 3 t + 25

a

State the initial displacement of the particle.

b

Write an expression for the velocity of the particle, v \left( t \right) = x' \left( t \right) .

c

Write an expression for the acceleration of the particle, a \left( t \right) = v' \left( t \right).

23

A charged particle moves back and forth about the fixed point x = 0 (called the origin). Its position, x \text{ cm} from the origin, after t seconds is given by the equation:

x = \sin \left( \pi e^{ 2 t}\right)
a

Find the particle's initial position.

b

Find an expression for the velocity of the particle , v \left( t \right) = x' \left( t \right).

c

Find the exact times for the first and second occasion that the particle comes to a stop.

d

Describe the position of the particle when it first comes to a stop, v \left( t \right) = 0.

e

Describe the position of the particle when it comes to a stop for the second time.

Sign up to access Worksheet
Get full access to our content with a Mathspace account

Outcomes

0606C14.3B

Use the derivatives of the standard functions sinx, cos x, tan x, together with constant multiples, sums and composite functions.

0606C14.3C

Use the derivatives of the standard functions e^x, ln x, together with constant multiples, sums and composite functions.

What is Mathspace

About Mathspace