topic badge
iGCSE (2021 Edition)

11.14 Applications of the differentiation of exponential functions

Interactive practice questions

Consider the function $f\left(x\right)=3-e^{-x}$f(x)=3ex.

a

Determine $f\left(0\right)$f(0).

b

Determine $f'\left(0\right)$f(0).

c

Which of the following statements is true?

$f'\left(x\right)<0$f(x)<0 for $x\ge0$x0

A

$f'\left(x\right)<0$f(x)<0 for all real $x$x.

B

$f'\left(x\right)>0$f(x)>0 for all real $x$x.

C

$f\left(x\right)>0$f(x)>0 for all real $x$x.

D
d

Determine the value of $\lim_{x\to\infty}f\left(x\right)$limxf(x).

Easy
4min

Find the equation of the tangent to the curve $f\left(x\right)=2e^x$f(x)=2ex at the point where it crosses the $y$y-axis.

Express the equation in the form $y=mx+c$y=mx+c.

Easy
4min

Consider the curve $f\left(x\right)=e^x+ex$f(x)=ex+ex.

By filling in the gaps, complete the proof showing that the tangent to the curve at the point $\left(1,2e\right)$(1,2e) passes through the origin.

Easy
4min

Consider the function $f\left(x\right)=4e^{-x^2}$f(x)=4ex2.

Easy
6min
Sign up to access Practice Questions
Get full access to our content with a Mathspace account

Outcomes

0606C14.3C

Use the derivatives of the standard functions e^x, ln x, together with constant multiples, sums and composite functions.

What is Mathspace

About Mathspace