To find the midpoint of an interval we want to find the mean of the two $x$x-coordinates and the mean of the two $y$y-coordinates.
Which of the following formulae correctly describes the coordinates of the midpoint of the points $\left(x_1,y_1\right)$(x1,y1) and $\left(x_2,y_2\right)$(x2,y2)?
$\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)$(x1+x22,y1+y22)
$\left(\frac{x_1-x_2}{2},\frac{y_1-y_2}{2}\right)$(x1−x22,y1−y22)
$\left(x_1+x_2,y_1+y_2\right)$(x1+x2,y1+y2)
$\left(\frac{x_1+y_1}{2},\frac{x_2+y_2}{2}\right)$(x1+y12,x2+y22)
$M$M is the midpoint of $A$A $\left(5,-6\right)$(5,−6) and $B$B $\left(5,2\right)$(5,2).
$M$M is the midpoint of Point $A$A $\left(6,5\right)$(6,5) and Point $B$B $\left(14,7\right)$(14,7).
$M$M is the midpoint of $A$A $\left(5,4\right)$(5,4) and $B$B $\left(5,10\right)$(5,10).