topic badge
Middle Years

6.03 Symmetries

Worksheet
Unit circle symmetries
1

Let \theta be an acute angle in radians. If \sin \theta = 0.6, find the value of the following:

a

\sin \left(180 - \theta\right)

b

\sin \left(180 + \theta\right)

c

\sin \left( - \theta \right)

2

Let \theta be an acute angle in radians. If \cos \theta = 0.1, find the value of the following:

a

\cos \left(180 - \theta\right)

b

\cos \left(180 + \theta\right)

c

\cos \left( - \theta \right)

3

Let \theta be an acute angle in radians. If \tan \theta = 0.52, find the value of the following:

a

\tan \left(180 - \theta\right)

b

\tan \left(180 + \theta\right)

c

\tan \left( 360 - \theta\right)

d

\tan \left( - \theta \right)

4

Suppose s is a real number that corresponds to the point \left( - \dfrac{8}{17} , \dfrac{15}{17}\right) on the unit circle:

a

Find the coordinates of \left(s - 90\right).

b

Find the value of \sin \left(s - 90\right).

c

Find the value of \cos \left(s - 90\right).

Complementary angles
5

Consider the following right triangle:

a

Find an expression for the following:

i

\cos \theta

ii

\sin \left(90 \degree - \theta\right)

iii

\sin \theta

iv

\cos \left(90 \degree - \theta\right)

b

Describe the rule found in part (a) using words.

c

If \sin \alpha = 0.32, find \cos\left(90\degree-\alpha\right).

d

If \sin \alpha = \cos \beta, find \alpha + \beta.

6

Find the acute angle \theta in the following equations:

a
\sin \theta = \cos 25 \degree
b
\cos \theta = \sin 85 \degree
7

Given that \sin x = 0.19, find the exact value of \cos \left(90 - x\right).

8

Find the value of x in the following equations:

a

\sin \left( 5 x + 40 \degree\right) = \cos \left( 3 x + 10 \degree\right)

b

\sin \left( 6 x + 60\right) = \cos \left( 4 x + 20\right)

9

Simplify:

a
\sin \left(90 \degree - p\right)
b

\dfrac{\cos \left(90 - x\right)}{\cos \left(x\right)}

c
\dfrac{\cos 26 \degree}{7 \sin 64 \degree}
d

\sin \left(90 \degree - y\right) \times \tan y

Sign up to access Worksheet
Get full access to our content with a Mathspace account

What is Mathspace

About Mathspace