topic badge
Middle Years

6.03 Symmetries

Lesson

Symmetries

There are many symmetries in the functions for sine and cosine from the unit circle. 

 

 

 

Comparing the coordinates of the points around the circle leads to the following rules:

Symmetry formulae

If we focus on the $y$y-coordinate, we can find:

$\sin\left(180^\circ-\theta\right)$sin(180°θ) $=$= $\sin\theta$sinθ
$\sin\left(180^\circ+\theta\right)$sin(180°+θ) $=$= $-\sin\theta$sinθ
$\sin\left(-\theta\right)$sin(θ) $=$= $-\sin\theta$sinθ

If we focus on the $x$x-coordinate, we can find:

$\cos\left(180^\circ-\theta\right)$cos(180°θ) $=$= $-\cos\theta$cosθ
$\cos\left(180^\circ+\theta\right)$cos(180°+θ) $=$= $-\cos\theta$cosθ
$\cos\left(-\theta\right)$cos(θ) $=$= $\cos\theta$cosθ

By using the definition $\tan\theta=\frac{\sin\theta}{\cos\theta}$tanθ=sinθcosθ similar rules can be created for $\tan\theta$tanθ

 

 

Further symmetries

Let's look at the relationship between trigonometric functions of complementary angles, that is, angles that add to $90^\circ$90°.

From the diagram, notice that the triangle formed by the angle $\theta$θ to the point $P$P has its sides flipped to form the triangle at angle $90^\circ-\theta$90°θ to point $Q$Q. Since the $x$x- and $y$y-coordinates have swapped when comparing the two points, the following rules can be extracted:

Complementary angle relationships
$\sin\left(90^\circ-\theta\right)$sin(90°θ) $=$= $\cos\theta$cosθ
$\cos\left(90^\circ-\theta\right)$cos(90°θ) $=$= $\sin\theta$sinθ

Practice questions

Question 1

Given that $\sin x=0.46$sinx=0.46, find the exact value of $\cos\left(90^\circ-x\right)$cos(90°x).

Question 2

Prove that $\frac{\sin x\sin\left(90^\circ-x\right)}{\cos x\cos\left(90^\circ-x\right)}=1$sinxsin(90°x)cosxcos(90°x)=1

 

What is Mathspace

About Mathspace