Consider the following image to investigate the trigonometric ratios $\cos\theta$cosθ and $\sin\left(90^\circ-\theta\right)$sin(90°−θ)
$\cos\theta$cosθ = $\editable{}$
$\sin\left(90^\circ-\theta\right)$sin(90°−θ) = $\editable{}$
Does $\cos\theta=\sin\left(90^\circ-\theta\right)$cosθ=sin(90°−θ) for all values of $\theta$θ less than 90°?
Yes
No
If $\sin\alpha=\cos\beta$sinα=cosβ, then $\alpha+\beta$α+β$=$=$\editable{}$°.
Fill in the blank with the acute angle that makes the statement true.
Simplify $\sin\left(90^\circ-p\right)$sin(90°−p) using the $\cos$cos ratio.