topic badge
Middle Years

6.02 Trigonometric identities

Worksheet
Trigonometric identities
1

State the exact value of the following:

\sin ^{2}\left(20 \degree\right) + \cos ^{2}\left(20 \degree\right)

2

Given that \cos x = \dfrac{12}{13} where x is in the first quadrant:

a

Find the exact value of \sin x.

b

Find the exact value of \tan x.

c

Prove the following:

i

\sin ^{2}x = 1- \cos ^{2}x

ii
\tan x=\dfrac{\sin x}{\cos x}
3

Given that \sin \theta = \dfrac{\sqrt{3}}{2}, where 90 \degree < \theta < 180 \degree:

a

In which quadrant does angle \theta lie?

b

Find the value of \cos \theta.

4

Simplify the following expressions:

a

\tan \theta \cos \theta

b

\left(\cos \theta - \sin \theta\right)^{2}

c

\dfrac{1 - \cos ^{2}\left(\theta\right)}{1 - \sin ^{2}\left(\theta\right)}

d

\dfrac{1}{1 - \cos \theta} + \dfrac{1}{1 + \cos \theta}

5

Prove the following identities:

a

\dfrac{\sin x}{\cos x \tan x} = 1

b

\dfrac{\sin x \cos x}{\tan x} = \cos ^{2}\left(x\right)

c

\dfrac{\sin ^{2}\left(x\right) + \sin x \cos x}{\cos ^{2}\left(x\right) + \sin x \cos x} = \tan x

d

\dfrac{\sin \theta}{1 - \cos \theta} = \dfrac{1 + \cos \theta}{\sin \theta}

6

Given that \cos y = - \dfrac{5}{13}, where 180 \degree < y < 360 \degree:

a

In which quadrant does angle y lie?

b

Find the value of \tan y.

Sign up to access Worksheet
Get full access to our content with a Mathspace account

What is Mathspace

About Mathspace