In our investigation into Pascal's triangle we found that we can generate the numbers in the rows of the triangle using our calculator.
Use your calculator to write down the answers to the following (on one line like I have):
Now use your calculator to write down the answers to the following:
$\binom{4}{0}$(40), $\binom{4}{1}$(41),$\binom{4}{2}$(42), $\binom{4}{3}$(43), $\binom{4}{4}$(44)
What connection do you see between the two types of notation and to Pascal's triangle?
What is the connection? This notation is used for what is called combinations in mathematics.
You should have discovered that the above answers to the combinations $\binom{4}{3}$(43), form an entire row in Pascal's triangle.
In general, we can find the values of $\binom{4}{3}$(43) in row number $n$n (starting at row $0$0) and the $r$r value is the element in the row, (also starting at $0$0).
So the value for $\binom{9}{4}$(94), will be the row beginning $1$1, $9$9, ..... and be the $5$5th number in the row - (remember we start the element from $0$0).
Find the missing elements in the this row from Pascal's Triangle.
$1,9,$1,9, $\editable{A},84,\editable{B},\editable{C},84,36,9,1$A,84,B,C,84,36,9,1
Firstly we know that the lines of the triangle are symmetrical. This helps us identify that box $\editable{A}$Ashould be the value of $36$36. As reading from left to right is the same as reading from right to left.
This symmetry doesn't help us with the values for $\editable{B}$B or $\editable{C}$C, but we can use our knowledge of combinations to solve this.
$\editable{B}=\editable{C}$B=C because of of the symmetry.
$\editable{B}$B also equals the value of $\binom{9}{4}$(94) and $\editable{C}$C$=$=$\binom{9}{5}$(95), but we also know that $\binom{9}{4}=\binom{9}{5}$(94)=(95) (confirming what we already knew from symmetry that the values will be the same).
$\editable{B}$B $=$= $\binom{9}{4}$(94) $=126$=126
Thus both $\editable{B}$B and $\editable{C}=126$C=126.
$(a+b)^0$(a+b)0 | $=$= | $1$1 |
$(a+b)^1$(a+b)1 | $=$= | $a+b$a+b |
$(a+b)^2$(a+b)2 | $=$= | $a^2+2ab+b^2$a2+2ab+b2 |
$(a+b)^3$(a+b)3 | $=$= | $a^3+3a^2b+3ab^2+b^3$a3+3a2b+3ab2+b3 |
$(a+b)^4$(a+b)4 | $=$= | $a^4+4a^3b+6a^2b^2+4ab^3+b^4$a4+4a3b+6a2b2+4ab3+b4 |
$(a+b)^5$(a+b)5 | $=$= | $a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5$a5+5a4b+10a3b2+10a2b3+5ab4+b5 |
Consider the expansions above of $(a+b)^n$(a+b)n. Particularly note the following patterns.
Determine the coefficients for the expansion of $(a+1)^7$(a+1)7, and then write out the full expansion.
So we can see that we will have $n+1=8$n+1=8 terms. As it is $+1$+1 in the bracket and $1^n=1$1n=1, the numbers from Pascal's triangle will be the coefficients.
We can refer to the relevant row in Pascal's triangle, specifically this row
This shows us that the coefficients will be
$1,7,21,35,35,21,7,1$1,7,21,35,35,21,7,1.
Thus the full expansion of $(a+1)^7$(a+1)7 will be
$\left(a+1\right)^7$(a+1)7 | |
$=$= | $a^7+7a^61^1+21a^51^2+35a^41^3+35a^31^4+21a^21^5+7a^11^6+1^7$a7+7a611+21a512+35a413+35a314+21a215+7a116+17 |
$=$= | $a^7+7a^6+21a^5+35a^4+35a^3+21a^2+7a+1$a7+7a6+21a5+35a4+35a3+21a2+7a+1 |
Reflect: These coefficients could also have been generated by evaluating $\binom{7}{0}$(70), $\binom{7}{1}$(71), $\binom{7}{2}$(72), $\binom{7}{3}$(73), $\binom{7}{4}$(74), $\binom{7}{5}$(75), $\binom{7}{6}$(76), $\binom{7}{7}$(77)
We can concisely summarise the pattern in expansions we have observed as a formula called the binomial theorem. This formula will also allow us to find particular terms in an expansion.
Using our knowledge that for an expansion of $\left(a+b\right)^n$(a+b)n the coefficients will be dictated by the combinations of $\nCr{n}{0}$nC0, $\nCr{n}{1}$nC1, $\nCr{n}{2}$nC2, $\dots$…, $\nCr{n}{n}$nCn, also notated as $\binom{n}{0}$(n0),$\binom{n}{1}$(n1),$\binom{n}{2}$(n2),$...$...,$\binom{n}{n}$(nn)
This results in the expansion looking like this:
$(a+b)^n=$(a+b)n=$\binom{n}{0}$(n0)$a^n$an$+$+$\binom{n}{1}$(n1)$a^{n-1}b^1+$an−1b1+$\binom{n}{2}$(n2)$a^{n-2}b^2+$an−2b2+$\binom{n}{3}$(n3)$a^{n-3}b^3+...+$an−3b3+...+$\binom{n}{r}$(nr)$a^{n-r}b^r+...+$an−rbr+...+$\binom{n}{n-1}$(nn−1)$a^1b^{n-1}+$a1bn−1+$\binom{n}{n}$(nn)$b^n$bn
Thus any particular term can be found using $\binom{n}{r}$(nr)$a^{\left(n-r\right)}$a(n−r)$b^r$br.
Expand $(2x+3)^5$(2x+3)5.
$(a+b)^n=$(a+b)n=$\binom{n}{0}$(n0)$a^n+$an+$\binom{n}{1}$(n1)$a^{n-1}b^1+$an−1b1+$\binom{n}{2}$(n2)$a^{n-2}b^2+$an−2b2+$\binom{n}{3}$(n3)$a^{n-3}b^3+...+$an−3b3+...+$\binom{n}{r}$(nr)$a^{n-r}b^r+...$an−rbr+...$\binom{n}{n-1}$(nn−1)$a^1b^{n-1}+$a1bn−1+$\binom{n}{n}$(nn)$b^n$bn
$(2x+3)^5=$(2x+3)5=$\binom{5}{0}$(50)$(2x)^5+$(2x)5+$\binom{5}{1}$(51)$(2x)^{5-1}3^1+$(2x)5−131+$\binom{5}{2}$(52)$(2x)^{5-2}3^2+$(2x)5−232+$\binom{5}{3}$(53)$(2x)^{5-3}3^3+$(2x)5−333+$\binom{5}{4}$(54)$(2x)^13^{5-1}+$(2x)135−1+$\binom{5}{5}$(55)$(3)^5$(3)5
$(2x+3)^5=1(2x)^5+5(2x)^43^1+10(2x)^33^2+10(2x)^23^3+5(2x)^13^4+1(3)^5$(2x+3)5=1(2x)5+5(2x)431+10(2x)332+10(2x)233+5(2x)134+1(3)5
$(2x+3)^5=32x^5+15(16x^4)+90(8x^3)+270(4x^2)+810x+243$(2x+3)5=32x5+15(16x4)+90(8x3)+270(4x2)+810x+243
$(2x+3)^5=32x^5+240x^4+720x^3+1080x^2+810x+243$(2x+3)5=32x5+240x4+720x3+1080x2+810x+243
What is the seventh term in the expansion of $(m-2n)^{12}$(m−2n)12?
We need to construct the seventh term from this $\binom{n}{r}$(nr)$a^{\left(n-r\right)}$a(n−r)$b^r$br where $n$n is $12$12 and $r$r is $6$6 (remember that $\binom{12}{0}$(120) is the coefficient of the first term).
The coefficient $\binom{n}{r}$(nr) where $n$n is $12$12 and $r$r is $6$6 is $\binom{12}{6}=924$(126)=924.
The term will have both $m$m and $(2n)$(2n) components. The $m$m component would be $m^{12-6}=m^6$m12−6=m6
The $2n$2n component would be $(2n)^6=64n^6$(2n)6=64n6.
So putting that altogether will give us $924m^6\times64n^6=59136m^6n^6$924m6×64n6=59136m6n6.
You are given some of the entries in a particular row of Pascal’s triangle. Fill in the missing entries.
$1$1 , $8$8 , $\editable{}$ , $56$56 , $70$70 , $\editable{}$ , $28$28 , $\editable{}$ , $1$1
How many terms are there in the expansion of $\left(m+y\right)^8$(m+y)8?
Using the relevant row of Pascal’s triangle, determine the coefficient of each term in the expansion of $\left(5+b\right)^5$(5+b)5.
$\left(5+b\right)^5$(5+b)5$=$=$\editable{}$$\times$×$5^5b^0$55b0$+$+$\editable{}$$\times$×$5^4b^1$54b1$+$+$\editable{}$$\times$×$5^3b^2$53b2$+$+$\editable{}$$\times$×$5^2b^3$52b3$+$+$\editable{}$$\times$×$5^1b^4$51b4$+$+$\editable{}$$\times$×$5^0b^5$50b5.