topic badge
Standard Level

13.08 Integration using substitution

Worksheet
Indefinite integrals
1

Consider the integral \int 5 \left( 5 x + 4\right)^{3} dx and the substitution u = 5 x + 4.

a

Find \dfrac{d u}{d x}.

b

Hence, find \int 5 \left( 5 x + 4\right)^{3} dx.

2

Find \int 2 x \left(x^{2} - 5\right)^{7} dx using the substitution u = x^{2} - 5.

3

Find \int 3 x^{2} \left(x^{3} + 7\right)^{4} dx using the substitution u = x^{3} + 7.

4

Find \int \dfrac{6 x}{\left( 3 x^{2} + 2\right)^{2}} dx using substitution.

Definite integrals
5

Consider the definite integral \int_{0}^{2} 3 \left( 3 x - 6\right)^{2} dx and the substitution u = 3 x - 6.

a

Find the value of u when the value of x is:

i
x = 0
ii
x = 2
b

Find \dfrac{d u}{d x}.

c

What does the integral, \int_{0}^{2} 3 \left( 3 x - 6\right)^{2} dx, become after making the substitution \\ u = 3 x - 6?

d

Evaluate this integral.

6

Find \int_{0}^{3} 9 \left(x + 3\right)^{2} dx using the substitution u = x + 3.

7

Find \int_{6}^{8} \left( 3 x - 15\right)^{2} dx using the substitution u = 3 x - 15.

8

Find \int_{1}^{2} 4 x \left( 2 x^{2} - 2\right)^{2} dx using the substitution u = 2 x^{2} - 2.

9

Find \int_{ - 1 }^{2} 64 x \left( 4 x^{2} + 1\right)^{3} dx using the substitution u = 4 x^{2} + 1.

10

Find \int_{0}^{1} \dfrac{- 144 x^{3}}{\left( 2 x^{4} - 3\right)^{3}} dx using the substitution u = 2 x^{4} - 3.

11

Find \int_{ - 2 }^{1} \dfrac{24}{\left(\dfrac{x + 5}{3}\right)^{4}} dx using the substitution u = \dfrac{x + 5}{3}.

12

Find the following definite integrals using substitution:

a
\int_{ - 1 }^{2} 3 x^{2} \left(x^{3} - 2\right)^{2} dx
b
\int_{ - 1 }^{2} - 81 x^{2} \left( 3 x^{3} - 8\right)^{2} dx
c
\int_{0}^{2} 24 x \left( 4 x^{2} + 9\right)^{0.5} dx
d
\int_{0}^{3} 16 x \sqrt{ 8 x^{2} + 9} dx
e
\int_{0}^{1} 24 x^{3} \left( 3 x^{4} + 3\right)^{2} dx
f
\int_{17}^{53} 9 \sqrt{ 3 x - 15} dx
g
\int_{-1}^{3} 8 \sqrt[3]{ 2 x + 2} dx
h
\int_{0}^{1} \dfrac{48 x}{\left( 3 x^{2}-1\right)^{3}} dx
i
\int_{ - 2 }^{1} \dfrac{- 216 x^{2}}{\left(x^{3} + 2\right)^{3}} dx
j
\int_{1}^{2} \dfrac{50 x}{\sqrt{ 5 x^{2} - 4}} dx
k
\int_{ - 1 }^{2} \left( 2 x + 5\right) \left(x^{2} + 5 x - 8\right)^{3} dx
l
\int_{0}^{1} \left( 4 x^{3} + 5\right) \left(x^{4} + 5 x + 2\right)^{3} dx
m
\int_{13}^{18} x \sqrt{x - 9} dx
Sign up to access Worksheet
Get full access to our content with a Mathspace account

What is Mathspace

About Mathspace