Just as certain trigonometric expressions involving a variable $\theta$θ or $x$x can be simplified with the help of identities, expressions with known values of $\theta$θ or $x$x can sometimes be evaluated using the same identities.
Here, we are making a distinction between 'simplification', meaning writing an expression in an equivalent but less complex form, and 'evaluation', meaning giving a numerical value to an expression.
Double-angle identities
$\sin2\theta$sin2θ | $=$= | $2\sin\theta\cos\theta$2sinθcosθ |
$\cos2\theta$cos2θ | $=$= | $\cos^2\theta-\sin^2\theta$cos2θ−sin2θ |
$=$= | $2\cos^2\theta-1$2cos2θ−1 | |
$=$= | $1-2\sin^2\theta$1−2sin2θ |
Simplify the expression: $2\sin45\cos45$2sin45cos45.
This expression looks like the double angle identity for $\sin2\theta$sin2θ. So we can use this identity to simplify it:
$2\sin45\cos45$2sin45cos45 |
$=$= | $\sin(2\times45)$sin(2×45) |
$=$= | $\sin90$sin90 | |
$=$= | $1$1 |
Simplify the expression: $6\cos^22x-3$6cos22x−3.
This looks like the cosine double identity, we just need to take out a factor of $3$3:
$6\cos^22x-3$6cos22x−3 | $=$= | $3(2\cos^22x-1)$3(2cos22x−1) |
$=$= | $3\cos2x$3cos2x |
Expand and simplify: $\left(\sin\theta+\cos\theta\right)^2$(sinθ+cosθ)2.
First we must expand the expression:
$\left(\sin\theta+\cos\theta\right)^2$(sinθ+cosθ)2 | $=$= | $\sin^2\theta+2\sin\theta\cos\theta+\cos^2\theta$sin2θ+2sinθcosθ+cos2θ |
The first and third term of the expanded expression make up the identity: $\sin^2\theta+\cos^2\theta=1$sin2θ+cos2θ=1. So we can replace these terms with the number $1$1.
$\left(\sin\theta+\cos\theta\right)^2$(sinθ+cosθ)2 | $=$= | $\sin^2\theta+2\sin\theta\cos\theta+\cos^2\theta$sin2θ+2sinθcosθ+cos2θ | |
$=$= | $1+2\sin\theta\cos\theta$1+2sinθcosθ |
Now we can use the sine double identity to simplify the second term:
$\left(\sin\theta+\cos\theta\right)^2$(sinθ+cosθ)2 | $=$= | $\sin^2\theta+2\sin\theta\cos\theta+\cos^2\theta$sin2θ+2sinθcosθ+cos2θ | |
$=$= | $1+2\sin\theta\cos\theta$1+2sinθcosθ | ||
$=$= | $1+\sin2\theta$1+sin2θ |
|
Half-angle identities
We derive some further identities from the double-angle identities, as follows:
We have the double angle identities
$\sin2\theta\equiv2\sin\theta\cos\theta$sin2θ≡2sinθcosθ
$\cos2\theta\equiv\cos^2\theta-\sin^2\theta$cos2θ≡cos2θ−sin2θ
By putting $\alpha=2\theta$α=2θ we obtain the corresponding half-angle formulae:
$\sin\alpha\equiv2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}$sinα≡2sinα2cosα2
$\cos\alpha\equiv\cos^2\frac{\alpha}{2}-\sin^2\frac{\alpha}{2}$cosα≡cos2α2−sin2α2
Simplify and find an approximate value for $\frac{\sin\left(\frac{\pi}{100}\right)}{1+\cos\left(\frac{\pi}{100}\right)}$sin(π100)1+cos(π100).
The numerator is $2\sin\left(\frac{\pi}{200}\right)\cos\left(\frac{\pi}{200}\right)$2sin(π200)cos(π200)
and the denominator is $1+\cos^2\left(\frac{\pi}{200}\right)-\sin^2\left(\frac{\pi}{200}\right)$1+cos2(π200)−sin2(π200) or equivalently,
$1+\cos^2\left(\frac{\pi}{200}\right)-\left(1-\cos^2\left(\frac{\pi}{200}\right)\right)=2\cos^2\left(\frac{\pi}{200}\right)$1+cos2(π200)−(1−cos2(π200))=2cos2(π200).
So,
$\frac{\sin\left(\frac{\pi}{100}\right)}{1+\cos\left(\frac{\pi}{100}\right)}$sin(π100)1+cos(π100) | $=$= | $\frac{2\sin\left(\frac{\pi}{200}\right)\cos\left(\frac{\pi}{200}\right)}{2\cos^2\left(\frac{\pi}{200}\right)}$2sin(π200)cos(π200)2cos2(π200) |
$=$= | $\tan\left(\frac{\pi}{200}\right)$tan(π200) |
Evaluate $\sin67.5^\circ$sin67.5°.
We observe that $67.5^\circ$67.5° is half of $135^\circ$135°, a second quadrant angle that is related to the first quadrant angle $45^\circ$45° for which we have exact values of the trigonometric functions.
We can use the identity $\cos\alpha\equiv\cos^2\frac{\alpha}{2}-\sin^2\frac{\alpha}{2}=1-2\sin^2\frac{\alpha}{2}$cosα≡cos2α2−sin2α2=1−2sin2α2. This can be rearranged to give
$\sin\frac{\alpha}{2}=\sqrt{\frac{1}{2}\left(1-\cos\alpha\right)}$sinα2=√12(1−cosα)
So, $\sin67.5^\circ=\sqrt{\frac{1}{2}\left(1-\cos135^\circ\right)}=\sqrt{\frac{1}{2}\left(1+\frac{1}{\sqrt{2}}\right)}=\frac{1}{2}\sqrt{2+\sqrt{2}}.$sin67.5°=√12(1−cos135°)=√12(1+1√2)=12√2+√2.
Find the exact value of $\cos157.5^\circ$cos157.5°.
Express your answer with a rational denominator.
Given $\cos\theta=\frac{4}{5}$cosθ=45 and $\sin\theta$sinθ$<$<$0$0, find:
$\sin\theta$sinθ
$\sin2\theta$sin2θ
$\cos2\theta$cos2θ
$\tan2\theta$tan2θ
Use the double angle identity for the sine ratio to simplify the expression $\frac{1}{6}\sin157.5^\circ\cos157.5^\circ$16sin157.5°cos157.5°.