topic badge
Standard Level

5.08 Using radians

Worksheet
Radians
1

Calculate the following trigonometric ratios to two decimal places:

a

\sin \dfrac{35 \pi}{16}

b

\cos 6.87

c

\sin 7.26

d

\tan 7.26

e

\tan \left(\dfrac{- 3 \pi}{7}\right)

f

\cos \dfrac{2 \pi}{3}

g

\sin \left( - \dfrac{4 \pi}{3}\right)

h
\cos \dfrac{4 \pi}{5}
i
\sin \left( - \dfrac{4 \pi}{5} \right)
Exact values
2

Consider the following diagram:

a

Find the length of side h.

b

Hence, state the exact value of:

i
\sin \dfrac{\pi}{3}
ii
\sin \dfrac{\pi}{6}
iii
\tan \dfrac{\pi}{3}
iv
\cos \dfrac{\pi}{3}
3

Consider the following diagram:

a

Find the length of the hypotenuse, h.

b

Hence, state the exact value of:

i
\sin \dfrac{\pi}{4}
ii
\cos \dfrac{\pi}{4}
iii
\tan \dfrac{\pi}{4}
4

Consider the unit circle diagram and state the exact value of the following trigonometric ratios:

a

\sin \dfrac{\pi}{2}

b

\cos \dfrac{3\pi}{2}

c

\tan \pi

d

\cos 0

e

\sin \left(-2\pi\right)

-1
1
0
-1
1
\dfrac{\pi}{2}
5

Find the exact value of the following:

a

\sin \dfrac{\pi}{3} + \cos \dfrac{\pi}{3}

b

\sin \dfrac{\pi}{6} \cos \dfrac{\pi}{4}

c

\dfrac{\sin \frac{\pi}{3}}{\cos \frac{\pi}{6}}

d

\sin \dfrac{\pi}{4} \cos \dfrac{\pi}{6} + \tan \dfrac{\pi}{4}

e

\sin ^{2}\left(\dfrac{\pi}{6}\right) - \cos ^{2}\left(\dfrac{\pi}{3}\right)

f

2\sin ^{2}\left(\dfrac{\pi}{2}\right) + 3\cos ^{2}\left(\dfrac{\pi}{2}\right)

Exact values from reference angles
6

Consider the unit circle shown, where points A and B have the same \\ y-coordinates.

Suppose that \theta = \dfrac{10 \pi}{11}. State the size of the reference angle, \alpha.

7

Consider the unit circle shown, where the line through A and B passes through the origin, O.

Suppose that \theta = \dfrac{8 \pi}{7}. State the size of the reference angle, \alpha.

8

Consider the unit circle shown, where the points A and B have the same \\ x-coordinate.

Suppose that \theta = \dfrac{9 \pi}{5}. State the size of the reference angle, \alpha.

9

Find the exact value of the following:

a

\sin \dfrac{5 \pi}{6}

b

\tan \dfrac{3 \pi}{4}

c

\sin \dfrac{7 \pi}{6}

d

\cos \dfrac{7 \pi}{6}

e

\sin \dfrac{5 \pi}{3}

f

\cos \dfrac{5 \pi}{3}

g

\cos 4 \pi

h

\tan 9 \pi

i

\sin \dfrac{ 5\pi}{2}

j

\cos \dfrac{ 7\pi}{2}

k

\cos \dfrac{3 \pi}{4}

l
\sin \dfrac{5 \pi}{4}
m
\cos \dfrac{5 \pi}{4}
n
\tan \dfrac{5 \pi}{4}
o

\tan \dfrac{7 \pi}{6}

p

\tan \dfrac{11 \pi}{6}

10

Find the exact value of the following:

a

\sin \left( - \dfrac{17 \pi}{6} \right)

b

\cos \left( - \dfrac{17 \pi}{6} \right)

c

\cos \left( - \dfrac{4 \pi}{3} \right)

d

\tan \left( - \dfrac{17 \pi}{6} \right)

11

Find the exact value of the following:

a

\dfrac{\left(\sin \dfrac{2 \pi}{3}\right) \left(\cos \dfrac{2 \pi}{3}\right) \left(\tan \dfrac{3 \pi}{4}\right)}{\tan \left( - \dfrac{\pi}{4} \right)}

b

\dfrac{\sin \dfrac{2 \pi}{3} + \cos \dfrac{5 \pi}{6} - \tan \dfrac{7 \pi}{4}}{\cos \dfrac{4 \pi}{3}}

Trigonometric functions
12

Consider the equation y = \sin x.

a

Complete the table with values in exact form:

x0\dfrac{\pi}{6}\dfrac{\pi}{2}\dfrac{5 \pi}{6}\pi\dfrac{7 \pi}{6}\dfrac{3 \pi}{2}\dfrac{11 \pi}{6}2 \pi
\sin x
b

Sketch a graph for y = \sin x on the domain -2\pi \leq 0 \leq 2\pi.

c

State the value of \sin \left(-2 \pi\right).

d

State the sign of \sin \left( \dfrac{- \pi}{12} \right).

e

State the sign of \sin \dfrac{13 \pi}{12}.

f

Which quadrant of a unit circle does an angle with measure \dfrac{13 \pi}{12} lie in?

13

Consider the equation y = \cos x.

a

Complete the table with values in exact form:

x0\dfrac{\pi}{3}\dfrac{\pi}{2}\dfrac{2 \pi}{3}\pi\dfrac{4 \pi}{3}\dfrac{3 \pi}{2}\dfrac{5 \pi}{3}2 \pi
\cos x
b

Sketch a graph for y = \cos x on the domain -2\pi \leq 0 \leq 2\pi.

c

State the value of \cos \pi.

d

State the sign of \cos \left( \dfrac{- \pi}{4} \right).

e

State the sign of \cos \dfrac{11 \pi}{6}.

f

Which quadrant of a unit circle does an angle with measure \dfrac{11 \pi}{6} lie in?

14

Consider the equation y = \tan x.

a

Complete the table with values in exact form:

x0\dfrac{\pi}{4}\dfrac{\pi}{2}\dfrac{3 \pi}{4}\pi\dfrac{5 \pi}{4}\dfrac{3 \pi}{2}\dfrac{7 \pi}{4}2 \pi
\tan x
b

Sketch the graph of y = \tan x on the domain -2\pi \leq 0 \leq 2\pi.

c

Graph the line y = 1 on the same coordinate plane.

d

Hence, state the exact solutions to the equation \tan x = 1 over this domain.

e

State the value of \tan \left(-2 \pi\right).

f

State the sign of \tan \left( \dfrac{- \pi}{6} \right).

g

State the sign of \tan \dfrac{9 \pi}{5}.

h

Which quadrant of a unit circle does an angle with measure \dfrac{9 \pi}{5} lie in?

15

Consider the function y = 5 \sin x.

a

Sketch the graph of the given function over the domain \left[ - 2 \pi , 2 \pi\right].

b

Graph the line y = x on the same coordinate plane.

c

Hence, state the number of solutions to the equation 5 \sin x = x.

16

Consider the graph of y = - \tan x and the plotted points A, B, C, D and E shown:

At which point is the graph of \\ y = -\tan x equal to zero?

\frac{1}{2}π
\frac{3}{2}π
x
-2
-1
1
2
y
Sign up to access Worksheet
Get full access to our content with a Mathspace account

What is Mathspace

About Mathspace