topic badge
Standard Level

5.04 Trigonometric identities

Worksheet
Trigonometric identities
1

Express \tan x in terms of \cos x and \sin x .

2

Find the exact value of \tan 10 \degree - \dfrac{\sin 10 \degree}{\cos 10 \degree}.

3

Find the value of \cos x given the following:

a

\sin x = - \dfrac{\sqrt{3}}{2} and \tan x = -\sqrt{3}

b

\sin x = \dfrac{b}{c} and \tan x = \dfrac{b}{a}

4

Find the value of \sin x given the following:

a

\cos x = \dfrac{15}{17} and \tan x = \dfrac{8}{15}

b

\cos x = - \dfrac{5}{13} and \tan x \gt 0

5

Find the value of \tan x given the following:

a
\sin x = \dfrac{4}{5} and \cos x = \dfrac{3}{5}
b
\sin x = \dfrac{2}{3} and \cos x \lt 0
6

Simplify the following expressions:

a

\tan \theta \cos \theta

b

\sin \left(90 \degree - y\right) \tan y

c

\dfrac{\sin \theta - \cos \theta}{\cos \theta}

7

Find the exact value of \tan x given the following equations:

a
\sin x = 2 \cos x
b
17 \cos x - 31 \sin x = 0
c
6 \sin x - 11 \cos x = 0
d
2 \sin^2 x - \cos^2 x =0
Pythagorean identities
8

State whether the following statements are correct:

a

\sin ^{2}\theta + \cos ^{2}\theta = 1

b

\sin ^{2}\theta + \cos ^{2}\theta = 2

9

Find the exact value of the following:

a
\sin ^{2}\left(20 \degree\right) + \cos ^{2}\left(20 \degree\right)
b
4\sin ^{2}\left(20 \degree\right) + 4\cos ^{2}\left(20 \degree\right)
10

Simplify the following expressions:

a

\left(\cos \theta - 1\right) \left(\cos \theta + 1\right)

b

\left(\cos \theta - \sin \theta\right)^{2}

c

\cos \theta \sin ^{2}\left(\theta\right) - \cos \theta

d

\left(3 - \cos x\right)^{2} + \sin ^{2}\left(x\right)

e

\dfrac{\sin ^{2}\left(\theta\right)}{1 - \sin ^{2}\left(\theta\right)}

f

\dfrac{1 - \sin ^{2}\left(\theta\right)}{\sin ^{2}\left(\theta\right) + \cos ^{2}\left(\theta\right)}

11

If x = 4 \sin \theta and y = 3 \cos \theta, form an equation relating x and y that does not involve \sin \theta or \cos \theta.

Proofs
12

Prove the following identities:

a

\dfrac{\cos x \tan x}{\sin x} = 1

b

\dfrac{1 - \sin ^{2}\left(x\right)}{\cos x} = \cos x

c

\dfrac{\sin \theta}{1 - \cos \theta} = \dfrac{1 + \cos \theta}{\sin \theta}

d

\left(\sin x + \cos x\right)^{2} = 1 + 2 \sin x \cos x

e

\sin A \cos A \tan A = \sin ^{2}\left(A\right)

f

\cos ^{4}\left(x\right) - \sin ^{4}\left(x\right) = 2 \cos ^{2}\left(x\right) - 1

g

5 \cos ^{2}\left(\theta\right) - 3 = 2 - 5 \sin ^{2}\left(\theta\right)

h

\dfrac{\left(1 + \sin \theta\right)^{2} + \cos ^{2}\left(\theta\right)}{1 + \sin \theta} = 2

i

\dfrac{\sin ^{2}\left(x\right) + \sin x \cos x}{\cos ^{2}\left(x\right) + \sin x \cos x} = \tan x

j

\dfrac{\sin x \cos \left(90 \degree - x\right)}{\cos x \sin \left(90 \degree - x\right)} = \tan ^{2}\left(x\right)

13

Prove the following identities:

a

\tan ^{2}\left(y\right) - \sin ^{2}\left(y\right) = \tan ^{2}\left(y\right) \sin ^{2}\left(y\right)

b

\sin ^{2}\left(a\right) - \sin ^{2}\left(b\right) + \cos ^{2}\left(a\right) \sin ^{2}\left(b\right) - \sin ^{2}\left(a\right) \cos ^{2}\left(b\right) = 0

c

\left(1 - \sin ^{2}\left(x\right)\right) \left(1 + \sin ^{2}\left(x\right)\right) = 2 \cos ^{2}\left(x\right) - \cos ^{4}\left(x\right)

Sign up to access Worksheet
Get full access to our content with a Mathspace account

What is Mathspace

About Mathspace