topic badge
Standard Level

5.07 Inverse functions

Worksheet
Inverse functions
1

Explain how a graphing utility such as a graphing calculator be used to visually determine if two functions are inverses of each other.

2

In each graph below two functions and the line y = x are drawn. For each graph, state whether the functions are inverse functions of each other.

a
-5
-4
-3
-2
-1
1
2
3
4
5
x
-5
-4
-3
-2
-1
1
2
3
4
5
y
b
-5
-4
-3
-2
-1
1
2
3
4
5
x
-5
-4
-3
-2
-1
1
2
3
4
5
y
c
-5
-4
-3
-2
-1
1
2
3
4
5
x
-5
-4
-3
-2
-1
1
2
3
4
5
y
d
-5
-4
-3
-2
-1
1
2
3
4
5
x
-5
-4
-3
-2
-1
1
2
3
4
5
y
e
-5
-4
-3
-2
-1
1
2
3
4
5
x
-5
-4
-3
-2
-1
1
2
3
4
5
y
f
-5
-4
-3
-2
-1
1
2
3
4
5
x
-5
-4
-3
-2
-1
1
2
3
4
5
y
g
-5
-4
-3
-2
-1
1
2
3
4
5
x
-5
-4
-3
-2
-1
1
2
3
4
5
y
3

For each of the following functions, find an expression for the inverse function y = f^{ - 1 } \left(x\right):

a

f \left( x \right) = 7 x - 8

b

f \left( x \right) = \dfrac{4 x}{3} - 5

c

f \left( x \right) = 6 x^{3}

d

f \left( x \right) = \sqrt[3]{x - 2}

e

f \left( x \right) = \dfrac{8}{x - 9} + 5

f

f \left( x \right) = \left(x - 4\right)^{3} + 3

g

f \left( x \right) = \dfrac{8}{5 x + 3}

h

f \left( x \right) = \dfrac{7}{\left(x + 8\right)^{3}} - 3

i

f \left( x \right) = 4 \left( 9 x - 2\right)^{3} - 7

4

For each of the following functions, find:

i
f^{-1}(x)
ii

The domain of f^{-1}(x)

iii

The range of f^{-1}(x)

a

f \left( x \right) = 8 x - 9 defined over \left[ - 4 , 2\right]

b

f \left( x \right) = x^{2} defined over \left[0, \infty\right)

c

f \left( x \right) = \sqrt{16 - x^{2}} defined over \left[0, 4\right]

5

For each of the following functions, find an expression for the inverse function \\ y = f^{ - 1 } \left(x\right):

a

f \left( x \right) = - \dfrac{4}{x}

-8
-6
-4
-2
2
4
6
8
x
-8
-6
-4
-2
2
4
6
8
y
b

f \left( x \right) = \sqrt[3]{x} + 5

-8
-6
-4
-2
2
4
6
8
x
-8
-6
-4
-2
2
4
6
8
y
Graphs of inverse functions
6

Consider the functions f \left( x \right) = \dfrac{1}{x} + 3 and g \left( x \right) = \dfrac{1}{x - 3}.

a

Sketch the graph of f \left( x \right).

b

Sketch the graph of g \left( x \right) on the same set of axes.

c

Are f \left( x \right) and g \left( x \right) inverses?

7

Consider the graph of the function f \left( x \right) over the line y = x:

Sketch the graph of f^{ - 1 } \left(x\right).

-5
-4
-3
-2
-1
1
2
3
4
5
x
-5
-4
-3
-2
-1
1
2
3
4
5
y
8

Consider the graphs of f \left( x \right) and g \left( x \right):

a

State the equation of f \left( x \right).

b

State the equation of g \left( x \right).

c

Evaluate f \left( g \left( x \right) \right).

d

Evaluate g \left( f \left( x \right) \right).

e

State whether the following statements are correct:

i

g \left( x \right) is an inverse of f \left( x \right).

ii

f \left( g \left( x \right) \right) has gradient - 2.

iii

f \left( x \right) is an inverse of g \left( x \right).

iv

g \left( f \left( x \right) \right) has gradient 1.

-5
-4
-3
-2
-1
1
2
3
4
5
x
-5
-4
-3
-2
-1
1
2
3
4
5
y
9

Consider the graph of y = \dfrac{2}{x} over the line y = x:

a

Sketch the graph of the inverse of \\y = \dfrac{2}{x}.

b

Compare the inverse graph to the original graph.

-5
-4
-3
-2
-1
1
2
3
4
5
x
-5
-4
-3
-2
-1
1
2
3
4
5
y
10

Sketch the graph of the inverse of the following functions:

a
-5
-4
-3
-2
-1
1
2
3
4
5
x
-5
-4
-3
-2
-1
1
2
3
4
5
y
b
-5
-4
-3
-2
-1
1
2
3
4
5
x
-5
-4
-3
-2
-1
1
2
3
4
5
y
c
-5
-4
-3
-2
-1
1
2
3
4
5
x
-5
-4
-3
-2
-1
1
2
3
4
5
y
d
-5
-4
-3
-2
-1
1
2
3
4
5
x
-5
-4
-3
-2
-1
1
2
3
4
5
y
e
-5
-4
-3
-2
-1
1
2
3
4
5
x
-5
-4
-3
-2
-1
1
2
3
4
5
y
f
-5
-4
-3
-2
-1
1
2
3
4
5
x
-5
-4
-3
-2
-1
1
2
3
4
5
y
g
-5
-4
-3
-2
-1
1
2
3
4
5
x
-5
-4
-3
-2
-1
1
2
3
4
5
y
h
-5
-4
-3
-2
-1
1
2
3
4
5
x
-5
-4
-3
-2
-1
1
2
3
4
5
y
i
-5
-4
-3
-2
-1
1
2
3
4
5
x
-5
-4
-3
-2
-1
1
2
3
4
5
y
j
-5
-4
-3
-2
-1
1
2
3
4
5
x
-5
-4
-3
-2
-1
1
2
3
4
5
y
11

For each of the following functions:

i

Sketch the function f \left( x \right) over its domain.

ii

Find the inverse, f ^{-1}.

iii

State the domain of f ^{-1}.

iii

State the range of f ^{-1}.

iv

Sketch the function f ^{-1} over its domain.

a

f \left( x \right) = x + 6 defined over the interval \left[0, \infty\right).

b

f \left( x \right) = 7 - x defined over the interval \left[2, 9\right].

c

f \left( x \right) = \left(x - 6\right)^{2} - 2 defined over the interval \left[6, \infty\right).

d

f \left( x \right) = \sqrt{4 - x} defined over the interval \left[0, 4\right).

e

f \left( x \right) = \left(x + 2\right)^{2} + 3 defined over the interval \left[0, \infty\right).

12

Consider the functions f \left( x \right) = x^{2} - 5 and g \left( x \right) = \sqrt{x + 5}, for x \geq 0. The function y is defined as y = g \left( f \left( x \right) \right), for x \geq 0.

a

State the equation for y.

b

Graph the functions f \left( x \right), g \left( x \right) and y on the same set of axes.

c

What do you notice about the graph of y in relation to the graphs of f \left( x \right) and g \left( x \right)?

Applications
13

The function t = \sqrt{\dfrac{d}{4.9}} can be used to find the number of seconds it takes for an object in Earth's atmosphere to fall d metres.

a

State the function for d in terms of t.

b

Find the distance a skydiver has fallen 5 seconds after jumping out of a plane.

14

The following formula can be used to convert Fahrenheit temperatures x to Celsius temperatures T \left( x \right):

T \left( x \right) = \dfrac{5}{9} \left(x - 32\right)

a

Find T \left( - 13 \right).

b

Find T \left( 86 \right).

c

Find T^{ - 1 } \left(x\right).

d

What can the formula T^{ - 1 } be used for?

15

A particle is moving along a straight line path. After t seconds, its velocity is given by the equation v = \left( 96 t - 80\right)^{2}.

a

Solve for the time t at which the particle comes to rest.

b

Determine the equation for time, t, in terms of velocity, v, that represents the motion of the particle before it has come to rest.

16

The tax on a new tablet is 7\% of the advertised price, A.

a

Determine the equation for the total cost T as a function of the advertised price A.

b

Hence, express the advertised price A as a function of the total cost T.

17

The function T = 2 \pi \sqrt{\dfrac{l}{9.8}} can be used to find the period T of a simple pendulum of length l metres.

a

Express the length l as a function of the period T.

b

Hence, find the length of a pendulum whose period is 1.5 seconds. Round your answer to one decimal place.

Sign up to access Worksheet
Get full access to our content with a Mathspace account

What is Mathspace

About Mathspace