The coefficients of the binomial expansion (x+y)^n can be determine using this formula involving factorials.
In general the binomial theorem says: \left(a+b\right)^n=\binom{n}{0}a^nb^0+\binom{n}{1}a^{n-1}b^1+\ldots +\binom{n}{r}a^{n-r}b^{r}+\ldots +\binom{n}{n-1}a^1b^{n-1}+\binom{n}{n}a^0b^n
For example: \left(4x+1\right)^3=\binom{3}{0}\left(4x\right)^3\left(1\right)^0+\binom{3}{1}\left(4x\right)^{2}\left(1\right)^1+\binom{3}{2}\left(4x\right)^{1}\left(1\right)^{2} +\binom{3}{3}\left(4x\right)^0 \left(1\right)^{3}
The elements of Pascal's triangle can also be used to evaluate the coefficients as row n will given the coefficients of the terms of \left(a+b\right)^n in order.
Evaluate each expression using the given approach.
Evaluate \binom{6}{3} using Pascal's triangle.
Evaluate {}_{7}C_{4} using formula.
Find the middle term in the expansion \left( 2x^{3} - 3y^{2}\right)^{8}.
Use the binomial theorem to expand \left(p+4\right)^{5}.