topic badge

3.08 Kinematics

Interactive practice questions

The position (in metres) of an object along a straight line after $t$t seconds is modelled by $x\left(t\right)=6t^2$x(t)=6t2.

a

State the velocity $v\left(t\right)$v(t) of the particle at time $t$t.

b

Which of the following represent the velocity of the particle after $4$4 seconds? Select all that apply.

$x'\left(4\right)$x(4)

A

$v'\left(4\right)$v(4)

B

$x\left(4\right)$x(4)

C

$v\left(4\right)$v(4)

D
c

Hence find the velocity of the particle after $4$4 seconds.

Easy
1min

A car starts at rest and has a displacement of $s$s metres in $t$t seconds, where $s=\frac{1}{6}t^3+\frac{1}{4}t^2$s=16t3+14t2.

Easy
2min

A boy throws a ball vertically. The height of the ball $h$h in metres is given by $h=1+17t-5t^2$h=1+17t5t2 where $t$t is given in seconds.

Easy
2min

The position (in metres) of an object along a straight line after $t$t seconds is modelled by $x\left(t\right)=18\sqrt{t}$x(t)=18t.

Easy
2min
Sign up to access Practice Questions
Get full access to our content with a Mathspace account

Outcomes

3.1.4

use exponential functions and their derivatives to solve practical problem

3.1.6

use trigonometric functions and their derivatives to solve practical problems

3.1.9

apply the product, quotient and chain rule to differentiate functions such as xe^x, tan⁡x,1/x^n, x sin⁡x, e^(−x)sin⁡x and f(ax-b)

3.1.12

identify acceleration as the second derivative of position with respect to time

What is Mathspace

About Mathspace