topic badge

7.085 Pythagorean identities

Worksheet
Pythagorean identities
1

State whether the following statements are correct:

a

\sin ^{2}\theta + \cos ^{2}\theta = 1

b

\sin ^{2}\theta + \cos ^{2}\theta = 2

2

Find the exact value of the following:

a
\sin ^{2}\left(20 \degree\right) + \cos ^{2}\left(20 \degree\right)
b
4\sin ^{2}\left(20 \degree\right) + 4\cos ^{2}\left(20 \degree\right)
3

Simplify the following expressions:

a

\left(\cos \theta - 1\right) \left(\cos \theta + 1\right)

b

\left(\cos \theta - \sin \theta\right)^{2}

c

\cos \theta \sin ^{2}\left(\theta\right) - \cos \theta

d

\left(3 - \cos x\right)^{2} + \sin ^{2}\left(x\right)

e

\dfrac{\sin ^{2}\left(\theta\right)}{1 - \sin ^{2}\left(\theta\right)}

f

\dfrac{1 - \sin ^{2}\left(\theta\right)}{\sin ^{2}\left(\theta\right) + \cos ^{2}\left(\theta\right)}

4

If x = 4 \sin \theta and y = 3 \cos \theta, form an equation relating x and y that does not involve \sin \theta or \cos \theta.

Proofs
5

Prove the following identities:

a

\dfrac{\cos x \tan x}{\sin x} = 1

b

\dfrac{1 - \sin ^{2}\left(x\right)}{\cos x} = \cos x

c

\dfrac{\sin \theta}{1 - \cos \theta} = \dfrac{1 + \cos \theta}{\sin \theta}

d

\left(\sin x + \cos x\right)^{2} = 1 + 2 \sin x \cos x

e

\sin A \cos A \tan A = \sin ^{2}\left(A\right)

f

\cos ^{4}\left(x\right) - \sin ^{4}\left(x\right) = 2 \cos ^{2}\left(x\right) - 1

g

5 \cos ^{2}\left(\theta\right) - 3 = 2 - 5 \sin ^{2}\left(\theta\right)

h

\dfrac{\left(1 + \sin \theta\right)^{2} + \cos ^{2}\left(\theta\right)}{1 + \sin \theta} = 2

i

\dfrac{\sin ^{2}\left(x\right) + \sin x \cos x}{\cos ^{2}\left(x\right) + \sin x \cos x} = \tan x

6

Prove the following identities:

a

\tan ^{2}\left(y\right) - \sin ^{2}\left(y\right) = \tan ^{2}\left(y\right) \sin ^{2}\left(y\right)

b

\sin ^{2}\left(a\right) - \sin ^{2}\left(b\right) + \cos ^{2}\left(a\right) \sin ^{2}\left(b\right) - \sin ^{2}\left(a\right) \cos ^{2}\left(b\right) = 0

c

\left(1 - \sin ^{2}\left(x\right)\right) \left(1 + \sin ^{2}\left(x\right)\right) = 2 \cos ^{2}\left(x\right) - \cos ^{4}\left(x\right)

Sign up to access Worksheet
Get full access to our content with a Mathspace account

Outcomes

2.3.2.7

solve equations involving trigonometric functions with and without technology

What is Mathspace

About Mathspace