A very useful expression can be found by applying Pythagoras' theorem to the right-angled triangle formed in a unit circle. Consider the picture below.
Applying Pythagoras' theorem:
$a^2+b^2$a2+b2 | $=$= | $c^2$c2 |
$\left(\cos\theta\right)^2+\left(\sin\theta\right)^2$(cosθ)2+(sinθ)2 | $=$= | $1$1 |
Which can also be written as:
$\cos^2\theta+\sin^2\theta$cos2θ+sin2θ | $=$= | $1$1 |
This relationship holds for any angle $\theta$θ.
$\cos^2\theta+\sin^2\theta$cos2θ+sin2θ | $=$= | $1$1 |
Evaluate the expression $5\cos^2\left(80^\circ\right)+5\sin^2\left(80^\circ\right)$5cos2(80°)+5sin2(80°).
Although neither $\cos\left(80^\circ\right)$cos(80°) or $\sin\left(80^\circ\right)$sin(80°) can be written in exact form using decimals or surds, we can simplify the expression by recognising the Pythagorean identity.
$5\cos^2\left(80^\circ\right)+5\sin^2\left(80^\circ\right)$5cos2(80°)+5sin2(80°) | $=$= | $5\left(\cos^2\left(80^\circ\right)+\sin^2\left(80^\circ\right)\right)$5(cos2(80°)+sin2(80°)) |
$=$= | $5\times1$5×1 | |
$=$= | $5$5 |
Find the exact value of $\cos\theta$cosθ and $\tan\theta$tanθ given that $\sin\theta=\frac{12}{13}$sinθ=1213 and $\theta$θ is in the second quadrant.
Think: We can find $\cos\theta$cosθ using the Pythagorean identity and the additional information about the quadrant will tell us if the ratio is positive or negative. One we know both $\sin\theta$sinθ and $\cos\theta$cosθ we can find $\tan\theta$tanθ using the definition $\tan\theta=\frac{\sin\theta}{\cos\theta}$tanθ=sinθcosθ
Do: Write out the Pythagorean identity and substitute the known value in.
$\cos^2\theta+\sin^2\theta$cos2θ+sin2θ | $=$= | $1$1 |
$\cos^2\theta+\left(\frac{12}{13}\right)^2$cos2θ+(1213)2 | $=$= | $1$1 |
$\cos^2\theta+\frac{144}{169}$cos2θ+144169 | $=$= | $1$1 |
$\cos^2\theta$cos2θ | $=$= | $1-\frac{144}{169}$1−144169 |
$\cos\theta$cosθ | $=$= | $\pm\sqrt{\frac{25}{169}}$±√25169 |
$=$= | $\pm\frac{5}{13}$±513 |
We have been given the additional information that $\theta$θ is in the second quadrant. In the second quadrant sine is positive but cosine and tangent will be negative. Hence, $\cos\theta=\frac{-5}{13}$cosθ=−513.
Using $\tan\theta=\frac{\sin\theta}{\cos\theta}$tanθ=sinθcosθ, we find:
$\tan\theta$tanθ | $=$= | $\frac{\sin\theta}{\cos\theta}$sinθcosθ |
$=$= | $\frac{12}{13}\div\frac{-5}{13}$1213÷−513 | |
$=$= | $\frac{-12}{5}$−125 |
Answer the following questions given that $\cos y=-\frac{5}{13}$cosy=−513, where $180^\circ
In which quadrant does angle $y$y lie?
Quadrant $I$I
Quadrant $II$II
Quadrant $III$III
Quadrant $IV$IV
Use a Pythagorean identity to find the value of $\tan y$tany.
Simplify $\left(\cos\theta-1\right)\left(\cos\theta+1\right)$(cosθ−1)(cosθ+1).