The position (in metres) of an object along a straight line after $t$t seconds is modelled by $x\left(t\right)=6t^2$x(t)=6t2.
State the velocity $v\left(t\right)$v(t) of the particle at time $t$t.
Which of the following represent the velocity of the particle after $4$4 seconds? Select all that apply.
$x'\left(4\right)$x′(4)
$v'\left(4\right)$v′(4)
$x\left(4\right)$x(4)
$v\left(4\right)$v(4)
Hence find the velocity of the particle after $4$4 seconds.
A car starts at rest and has a displacement of $s$s metres in $t$t seconds, where $s=\frac{1}{6}t^3+\frac{1}{4}t^2$s=16t3+14t2.
A boy throws a ball vertically. The height of the ball $h$h in metres is given by $h=1+17t-5t^2$h=1+17t−5t2 where $t$t is given in seconds.
The position (in metres) of an object along a straight line after $t$t seconds is modelled by $x\left(t\right)=18\sqrt{t}$x(t)=18√t.