topic badge
AustraliaNSW
Stage 5.1-3

10.03 Periodicity

Worksheet
Signs of trigonometric ratios
1

Determine whether the following ratios will have positive or negative answers:

a

\sin 143 \degree

b

\tan 284 \degree

c

\cos 143 \degree

d

\cos 284 \degree

e

\sin 284 \degree

f

\cos 269 \degree

g

\sin 170 \degree

h

\cos 320 \degree

2

Determine whether the following statements are true or false:

a

\sin 70 \degree is positive.

b

\sin 110 \degree is negative.

c

\sin 250 \degree is negative.

d

\sin 290 \degree is negative.

Equivalent angles
3

For each of the following trigonometric expressions:

i

State the quadrant where the angle is found.

ii

Find the value of the related positive acute angle.

iii

Is the expression positive or negative?

iv

Rewrite the expression in terms of its relative acute angle.

a

\sin 135 \degree

b

\tan 120 \degree

c

\cos 240 \degree

4

Rewrite the following trigonometric expressions in terms of their relative acute angle:

a

\sin 106 \degree

b

\cos 149 \degree

c

\tan 124 \degree

d

\cos 579 \degree

e

\tan 465 \degree

f

\sin 240 \degree

g

\cos 315 \degree

h

\tan 140 \degree

i

\tan 380 \degree

j

\sin 174 \degree

k

\cos 210 \degree

l

\tan 295 \degree

m

\tan \left( - 70 \degree \right)

n

\sin \left( - 50 \degree \right)

o

\cos \left( - 80 \degree \right)

p

\cos \left( - 110 \degree \right)

5

For each of the following expressions, find the equivalent trigonometric expression in the first quadrant:

a
\sin 300 \degree
b
\cos 165 \degree
c
\tan 220 \degree
d
\cos 400 \degree
6

Using the approximations \cos 21 \degree = 0.93 and \sin 21 \degree = 0.36, find the approximate value of the following trigonometric expressions, correct to two decimal places:

a

\cos 159 \degree

b

\sin \left( - 159 \degree \right)

7

Determine whether the following expressions are equal to \sin \left(360 \degree + \theta\right):

a
- \cos \theta
b
- \sin \theta
c
\cos \theta
d
\sin \theta
8

Determine whether the following expressions are equal to \cos \theta:

a

\cos \left(360 \degree - \theta\right)

b

\sin \left(180 \degree - \theta\right)

c

- \cos \left(180 \degree + \theta\right)

d

\sin \left(90 \degree - \theta\right)

9

Simplify the following:

a

\sin \left(180 \degree - \theta\right)

b

\cos \left(360 \degree - \theta\right)

c

\sin \left( - \theta \right)

Exact values
10

Consider the following trigonometric expressions:

i

Find the value of the related acute angle.

ii

Hence, find the exact value of the trigonometric expression.

a
\sin 480 \degree
b

\cos \left( - 135 \degree \right)

c

\cos \left( - 120 \degree \right)

d
\tan 225 \degree
e
\tan 540 \degree
f
\sin (-210) \degree
g
\cos 780 \degree
h
\sin 720 \degree
11

Find the exact value of the following trigonometric expressions:

a

\sin 315 \degree

b

\cos 315 \degree

c

\tan 315 \degree

d

\sin 855 \degree

e

\cos 855 \degree

f

\tan 855 \degree

g

\sin (-135) \degree

h

\cos (-225) \degree

i

\tan 135 \degree

j

\sin 240 \degree

k

\cos 300 \degree

l

\tan 405 \degree

Sign up to access Worksheet
Get full access to our content with a Mathspace account

Outcomes

MA5.3-15MG

applies Pythagoras' theorem, trigonometric relationships, the sine rule, the cosine rule and the area rule to solve problems, including problems involving three dimensions

What is Mathspace

About Mathspace