Solve the following exponential equations:
4^{x} = 4^{8}
3^{x} = 3^{\frac{2}{9}}
3^{x} = 27
7^{x} = 1
8^{x} = \dfrac{1}{8^{2}}
3^{y} = \dfrac{1}{27}
10^{x} = 0.01
3^{x} = 3^{6}
6^{x} = 6^{ - 3 }
6^{x} = 6^{\frac{4}{3}}
2^{x} = 64
9^{x} = 1
5^{x} = \dfrac{1}{5^{2}}
10^{x} = 0.0001
9^{y} = 81
Consider the following equations:
Rewrite each side of the equation with a base of 2.
Hence, solve for x.
8^{x} = 4
16^{x} = \dfrac{1}{2}
\dfrac{1}{1024} = 4^x
Solve for x in the following equations:
9^{y} = 27
25^{y} = 125
3^{ 5 x - 10} = 1
25^{x + 1} = 125^{ 3 x - 4}
9^{x + 4} = 27^{x}
3^{ 4 x - 8} = 1
8^{x + 3} = 32^{ 2 x - 1}
3^{x^{2} - 3 x} = 81
27 \left(2^{x}\right) = 6^{x}
Solve for x in the following equations:
30 \times 2^{x - 6} = 15
2^{x} \times 2^{x + 3} = 32
3^{x} \times 9^{x - 1} = 27
24 \times 2^{x - 6} = 12
2^{x} \times 2^{x + 2} = 16
3^{x} \times 9^{x - 4} = 9