topic badge
Australia
10&10a

5.02 The exponential function

Worksheet
Exponential equations
1

Consider the following equations:

i

Rewrite each side of the equation with a base of 2.

ii

Hence, solve for x.

a

8^{x} = 4

b

16^{x} = \dfrac{1}{2}

c

\dfrac{1}{1024} = 4^x

d

\left(\sqrt{2}\right)^{x} = \sqrt[5]{32}

2

Solve the following exponential equations:

a

4^{x} = 4^{8}

b

3^{x} = 3^{\frac{2}{9}}

c

3^{x} = 27

d

7^{x} = 1

e

8^{x} = \dfrac{1}{8^{2}}

f

3^{y} = \dfrac{1}{27}

g

10^{x} = 0.01

h

3^{x} = 3^{6}

i

6^{x} = 6^{ - 3 }

j

6^{x} = 6^{\frac{4}{3}}

k

2^{x} = 64

l

9^{x} = 1

m

5^{x} = \dfrac{1}{5^{2}}

n

10^{x} = 0.0001

o

9^{y} = 81

3

Solve for x in the following equations:

a

9^{y} = 27

b

25^{y} = 125

c

3^{ 5 x - 10} = 1

d

25^{x + 1} = 125^{ 3 x - 4}

e

9^{x + 4} = 27^{x}

f

3^{ 4 x - 8} = 1

g

8^{x + 3} = 32^{ 2 x - 1}

h

30 \times 2^{x - 6} = 15

i

2^{x} \times 2^{x + 3} = 32

j

3^{x} \times 9^{x - k} = 27

k
a^{x-1} = a^4
l

a^{x + 1} = a^{3} \sqrt{a}

m

3^{x^{2} - 3 x} = 81

n

27 \left(2^{x}\right) = 6^{x}

o
3^{x} \times 3^{ n x} = 81
p

24 \times 2^{x - 6} = 12

q

2^{x} \times 2^{x + 2} = 16

r

3^{x} \times 9^{x - k} = 9

4

Solve the following exponential equations:

a

5^{x} = \sqrt[3]{5}

b

30^{n} = \sqrt[3]{30}

c

5^{x} = \sqrt{5}

d

5^{x} = \sqrt[4]{5}

e

9^{x} = \sqrt[9]{9}

f

\left(\sqrt{7}\right)^{y} = 49

g

\left(\sqrt{6}\right)^{y} = 36

h
\left(\sqrt{2}\right)^{k} = 0.5
i
20^{n} = \sqrt[4]{20}
5

Solve the following exponential equations:

a

\left(\dfrac{5}{8}\right)^{x} = \left(\dfrac{5}{8}\right)^{9}

b

7 \left(4^{x}\right) = \dfrac{7}{4^{3}}

c

\dfrac{1}{3^{x - 3}} = \sqrt[3]{9}

d

\left(\dfrac{1}{9}\right)^{x + 5} = 81

e

\left(\dfrac{1}{8}\right)^{x - 3} = 16^{ 4 x - 3}

f

\dfrac{25^{y}}{5^{4 - y}} = \sqrt{125}

g

8^{x + 5} = \dfrac{1}{32 \sqrt{2}}

h

\left(\dfrac{1}{25}\right)^{x - 4} = 125^{ 3 x - 1}

i

8^{x + 4} = \dfrac{1}{32 \sqrt{2}}

j

\left(\dfrac{1}{27}\right)^{x - 5} = 81

k

\dfrac{1}{5^{x + 3}} = \sqrt[3]{25}

l

9 \left(8^{x}\right) = \dfrac{9}{8^{2}}

Sign up to access Worksheet
Get full access to our content with a Mathspace account

Outcomes

ACMNA239

Explore the connection between algebraic and graphical representations of relations such as simple quadratics, circles and exponentials using digital technology as appropriate

What is Mathspace

About Mathspace