Consider the function $y=\left|x\right|$y=|x|.
Complete the table.
$x$x | $-2$−2 | $-1$−1 | $0$0 | $1$1 | $2$2 |
---|---|---|---|---|---|
$y$y | $\editable{}$ | $\editable{}$ | $\editable{}$ | $\editable{}$ | $\editable{}$ |
Hence sketch a graph of the function.
State the equation of the axis of symmetry.
State the coordinates of the vertex.
Vertex $=$=$\left(\editable{},\editable{}\right)$(,)
Write the equation and gradient for the two lines that make up the graph of the function.
Equation | Gradient | |
---|---|---|
$x<0$x<0 | $y$y$=$=$\editable{}$ | $\editable{}$ |
$x>0$x>0 |
$y$y$=$=$\editable{}$ | $\editable{}$ |
Graph $y=3\left|x\right|$y=3|x|.
Graph $y=-3\left|x\right|$y=−3|x|.
Consider the function $y=3\left|x\right|-3$y=3|x|−3.