# 9.01 Key features of sine, cosine, and tangent graphs

## Interactive practice questions

Consider the equation $y=\sin x$y=sinx.

a

Using the fact that $\sin30^\circ=\frac{1}{2}$sin30°=12, what is the value of $\sin150^\circ$sin150°?

b

Using the fact that $\sin30^\circ=\frac{1}{2}$sin30°=12, what is the value of $\sin210^\circ$sin210°?

c

Using the fact that $\sin30^\circ=\frac{1}{2}$sin30°=12, what is the value of $\sin330^\circ$sin330°?

d

Complete the table of values giving answers in exact form.

 $x$x $\sin x$sinx $0^\circ$0° $30^\circ$30° $90^\circ$90° $150^\circ$150° $180^\circ$180° $210^\circ$210° $270^\circ$270° $330^\circ$330° $360^\circ$360° $\editable{}$ $\editable{}$ $\editable{}$ $\editable{}$ $\editable{}$ $\editable{}$ $\editable{}$ $\editable{}$ $\editable{}$
e

Plot the graph of $y=\sin x$y=sinx.

Easy
Approx 5 minutes

Consider the equation $y=\cos x$y=cosx.

Consider the equation $y=\tan x$y=tanx.

Consider the equation $y=\sin x$y=sinx.

### Outcomes

#### F.TF.B.5

Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline.