topic badge

8.04 Polygons in the coordinate plane

Lesson

Many geometrical properties of figures can either be verified or proved using coordinate geometry.

There is a range of established formulas that become useful in this endeavor. You may wish to go back to a previous lesson to review each one.

  • The distance formula given by $d=\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}$d=(x2x1)2+(y2y1)2
  • The slope formula $m=\frac{y_2-y_1}{x_2-x_1}$m=y2y1x2x1
  • The perpendicular property $m_1*m_2=-1$m1*m2=1
  • The parallel property $m_1=m_2$m1=m2
  • The midpoint formula is given by $\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)$(x1+x22,y1+y22)

In the lesson, we will focus on triangles and quadrilaterals. You should be familiar with the properties of side lengths and angles of the following polygons.

Quadrilaterals:

  1. Parallelogram
  2. Rhombus
  3. Rectangle
  4. Square
  5. Kite
  6. Trapezoid

Triangles:

  1. Isosceles
  2. Scalene
  3. Equilateral
  4. Right-angled
  5. Acute
  6. Obtuse

 

Worked examples

Checking a parallelogram

Show that the quadrilateral with vertices given by $P\left(2,3\right),Q\left(3,6\right),R\left(6,8\right),S\left(5,5\right)$P(2,3),Q(3,6),R(6,8),S(5,5) is a parallelogram.

A parallelogram is a quadrilateral with both pairs of opposite sides parallel.

Think: If opposite sides are parallel then they must have the same slope. We need $\overline{PQ}\parallel\overline{RS}$PQRS and $\overline{QR}\parallel\overline{PS}$QRPS

Do: We can check the slopes of $\overline{PQ}$PQ and $\overline{RS}$RS and the slopes of the line segments $\overline{QR}$QR and $\overline{PS}$PS.

$m_{\overline{PQ}}=\frac{6-3}{3-2}=3$mPQ=6332=3

$m_{\overline{RS}}=\frac{5-8}{5-6}=3$mRS=5856=3

$\overline{PQ}\parallel\overline{RS}$PQRS

$m_{\overline{QR}}=\frac{8-6}{6-3}=\frac{2}{3}$mQR=8663=23

$m_{\overline{PS}}=\frac{5-3}{5-2}=\frac{2}{3}$mPS=5352=23

$\overline{QR}\parallel\overline{PS}$QRPS

Reflect: Both pairs of opposite sides are parallel. Hence, the quadrilateral is a parallelogram.

 

Checking a right triangle

Prove that $A\left(-4,-4\right),B\left(-1,-1\right),C\left(1,-3\right)$A(4,4),B(1,1),C(1,3) are the vertices of a right triangle.

Think: To be a right triangle, we need to have one pair of perpendicular sides. The easiest way to do this is to check for the perpendicular property $m_1m_2=-1$m1m2=1 given above for $m_{\overline{AB}}$mAB$m_{\overline{AB}}$mAB, and $m_{\overline{AB}}$mAB.

Do: The three slopes are determined as

$m_{\overline{AB}}=\frac{-1-\left(-4\right)}{-1-\left(-4\right)}=1$mAB=1(4)1(4)=1

$m_{\overline{BC}}=\frac{-3-\left(-1\right)}{1-\left(-1\right)}=-1$mBC=3(1)1(1)=1

$m_{\overline{AC}}=\frac{-3-\left(-4\right)}{1-\left(-4\right)}=\frac{1}{5}$mAC=3(4)1(4)=15

Reflect: Note that $m_{\overline{AB}}\times m_{\overline{BC}}=-1$mAB×mBC=1 and so $\overline{BC}$BC is perpendicular to $\overline{AB}$AB, and the triangle is right-angled.  

 

Checking a rhombus

Prove that the quadrilateral with vertices $A\left(4,9\right),B\left(5,13\right),C\left(9,14\right),D\left(8,10\right)$A(4,9),B(5,13),C(9,14),D(8,10) is a rhombus.

Think: A rhombus must have all sides of equal length and opposite sides must be parallel. It does not need to be a square, so the adjacent sides do not need to be perpendicular.

Do: Let's look at distances first, to ensure that they are all the same. We find:

$\overline{AB}=\sqrt{1^2+4^2}=\sqrt{17}$AB=12+42=17

$\overline{BC}=\sqrt{4^2+1^2}=\sqrt{17}$BC=42+12=17

$\overline{CD}=\sqrt{1^2+4^2}=\sqrt{17}$CD=12+42=17

$\overline{DA}=\sqrt{4^2+1^2}=\sqrt{17}$DA=42+12=17

Next, let's calculate slope to ensure that opposite sides are parallel,

$m_{\overline{AB}}=\frac{4}{1}=4$mAB=41=4

$m_{\overline{CD}}=\frac{-4}{-1}=4$mCD=41=4

so $m_{\overline{AB}}\parallel m_{\overline{CD}}$mABmCD

$m_{\overline{BC}}=\frac{1}{4}$mBC=14

$m_{\overline{DA}}=\frac{1}{4}$mDA=14

so $m_{\overline{BC}}\parallel m_{\overline{DA}}$mBCmDA

Reflect: The opposite side pairs are parallel and all sides are the same length, so this is indeed a rhombus.

 

Practice questions

Question 1

Consider the triangle shown below:

Loading Graph...

  1. Determine the slope of the line segment $AB$AB.

  2. Similarly, determine the slope of side $AC$AC:

  3. Next determine the length of the side $AB$AB.

  4. Now determine the length of the side $AC$AC.

  5. Hence state the type of triangle that has been graphed. Choose the most precise answer.

    An acute isosceles triangle.

    A

    An isosceles right triangle.

    B

    A scalene right triangle.

    C

    An equilateral triangle.

    D

Question 2

The four points $A$A$\left(-8,-4\right)$(8,4), $B$B$\left(-5,0\right)$(5,0), $C$C$\left(0,-2\right)$(0,2) and $D$D$\left(-3,-6\right)$(3,6) are the vertices of a quadrilateral.

  1. Plot the quadrilateral.

    Loading Graph...

  2. Find the slope of $\overline{AB}$AB.

  3. Find the slope of $\overline{BC}$BC.

  4. Find the slope of $\overline{CD}$CD.

  5. Find the slope of $\overline{DA}$DA.

  6. Which segments are parallel?

    $\overline{DC}$DC and $\overline{AB}$AB

    A

    $\overline{AD}$AD and $\overline{AB}$AB

    B

    $\overline{DC}$DC and $\overline{BC}$BC

    C

    $\overline{BC}$BC and $\overline{AD}$AD

    D
  7. What type of quadrilateral is $ABCD$ABCD?  Choose the most precise answer.

    A square

    A

    A rhombus

    B

    A rectangle

    C

    A parallelogram

    D

Question 3

$A$A $\left(2,1\right)$(2,1), $B$B $\left(7,3\right)$(7,3) and $C$C $\left(7,-5\right)$(7,5) are the vertices of a triangle.

  1. Which side of the triangle is a vertical line?

    $BC$BC

    A

    $AB$AB

    B

    $AC$AC

    C
  2. Determine the area of the triangle using $A=\frac{1}{2}bh$A=12bh.

 

Outcomes

NC.M1.G-GPE.4

Use coordinates to solve geometric problems involving polygons algebraically • use coordinates to compute perimeters of polygons and areas of triangles and rectangles. • Use coordinates to verify algebraically that a given set of points produces a particular type of triangle or quadrilateral.

What is Mathspace

About Mathspace