topic badge

8.05 Trigonometric functions on the unit circle

Interactive practice questions

The diagram shows a unit circle with point $P\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$P(12,12) marked on the circle. Point $P$P represents a rotation of $45^\circ$45° counterclockwise around the origin from the positive $x$x-axis.

a

Complete the table of values.

$\sin45^\circ$sin45° $\cos45^\circ$cos45° $\tan45^\circ$tan45°
$\frac{\editable{}}{\sqrt{\editable{}}}$ $\frac{\editable{}}{\sqrt{\editable{}}}$ $\editable{}$
b

On the coordinate axes below, a $45^\circ$45° angle has also been marked in the second, third, and fourth quadrants. For each quadrant, what is the relative angle (the counterclockwise rotation from the positive $x$x-axis)?

Quadrant $I$I $II$II $III$III $IV$IV
Relative angle $45^\circ$45° $\editable{}$$^\circ$° $\editable{}$$^\circ$° $\editable{}$$^\circ$°
c

Points $Q$Q, $R$R and $S$S mark rotations of point $P$P to the corresponding angles on the unit circle.

Complete the coordinates of each point.

$Q$Q$\left(\frac{\editable{}}{\sqrt{\editable{}}},\frac{\editable{}}{\sqrt{\editable{}}}\right)$(,)

$R$R$\left(\frac{\editable{}}{\sqrt{\editable{}}},\frac{\editable{}}{\sqrt{\editable{}}}\right)$(,)

$S$S$\left(\frac{\editable{}}{\sqrt{\editable{}}},\frac{\editable{}}{\sqrt{\editable{}}}\right)$(,)

d

Complete the gaps using any of the following numbers: $1,2,3,4$1,2,3,4

$\sin x$sinx is positive in quadrants $\editable{},\editable{}$,.

$\cos x$cosx is positive in quadrants $\editable{},\editable{}$,.

$\tan x$tanx is positive in quadrants $\editable{},\editable{}$,.

e

To find $\sin173^\circ$sin173°, we can first find the sine ratio of which acute angle?

Easy
8min

Consider the graph of the unit circle shown below.

Easy
< 1min

Consider the graph of the unit circle shown below.

Easy
< 1min

Use the figure to find the value of $\sin\left(\frac{7\pi}{6}\right)$sin(7π6).

Easy
< 1min
Sign up to access Practice Questions
Get full access to our content with a Mathspace account

Outcomes

III.F.TF.2

Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.

What is Mathspace

About Mathspace