topic badge

2.025 Piecewise functions

Worksheet
Piecewise functions
1

Consider the piecewise function graphed:

a

Determine the function value for:

i
x = - 1
ii
x = 0
iii
x = 2
b

Determine if the graph is continuous or discontinuous at:

i
x = - 1
ii
x = 0
iii
x = 2
-5
-4
-3
-2
-1
1
2
3
4
5
x
-3
-2
-1
1
2
3
4
5
6
7
y
2

Consider the graph of y = f \left( x \right).

a

Find the function value at x = 2.

b

Is the graph continuous at x = 2?

-1
1
2
3
4
5
6
7
8
9
10
x
1
2
3
4
5
6
7
8
9
10
y
3

Consider the graph of y = f \left( x \right) shown:

a

What is the function value at x = - 5?

b

Is the graph continuous at x = - 5?

-8
-6
-4
-2
2
4
6
8
x
-9
-8
-7
-6
-5
-4
-3
-2
-1
1
2
3
4
y
4

Consider the graph of y = f \left( x \right) shown:

a

What is the function value at x = 4?

b

Is the graph continuous at x = 4?

-12
-10
-8
-6
-4
-2
2
4
6
8
10
12
x
-2
-1
1
2
3
4
5
6
7
8
y
5

Consider the graph of y = f \left( x \right):

a

Is the function defined for all real values of x?

b

Is the graph continuous at x = 4?

-4
-3
-2
-1
1
2
3
4
5
6
7
8
9
x
-4
-3
-2
-1
1
2
3
4
5
6
7
8
9
y
6

A function is defined as:

f\left(x\right) = \begin{cases} x + 9; & x \geq 8 \\ x - 3; & x < 8 \end{cases}

Evaluate:

a

f \left( 10 \right)

b

f \left( 7 \right)

c

f \left( 4 \right) + f \left( 10 \right)

7

A function is defined as:

f\left(x\right) = \begin{cases} x^{2} - 2; & x \geq 3\\ 4; & 0 < x < 3\\ 4 x; & x \leq 0 \end{cases}

Evaluate:

a

f \left( 4 \right)

b

f \left( 0.5 \right)

c

f \left( - 3 \right)

d

f \left( a \right), where a is a negative value

8

A function is defined as:

f\left(x\right) = \begin{cases} 4 x - 3; & x \geq 0\\ 7 - x^{2}; & x < 0 \end{cases}

Evaluate:

a

f \left( 5 \right) + f \left( - 5 \right)

b

f \left( 6 \right)^{2}

c

f \left( a^{2} \right), where a is any positive or negative integer

9

For which values of x are the following functions undefined?

a
f \left( x \right) = \dfrac{1}{x}
b
g \left( x \right) = \dfrac{1}{3 + x}
c
h \left( x \right) = \sqrt{16 - x^{2}}
d
f \left( x \right) = \sqrt{x - 16}
Sign up to access Worksheet
Get full access to our content with a Mathspace account

Outcomes

MA11-1

uses algebraic and graphical techniques to solve, and where appropriate, compare alternative solutions to problems

What is Mathspace

About Mathspace